ANALYSIS OF THE SPIN STATE OF THE IRON COMPLEXES WITH HYDROXYSUBSTITUTED 2,6-BIS(PYRAZOL-3-YL)PYRIDINES FOR DEPROTONATION IN SOLUTION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Simple mixing of iron(II) perchlorate hexahydrate with the corresponding 2,6-bis(pyrazol-3-yl) pyridine bearing either a phenyl (LH) or ortho-difluorophenyl (LF) group at the 1-position of the pyrazolyl moiety and a deprotonatable hydroxyl group at its 5-position in deuterated methanol within an NMR tube yielded the previously described iron(II) complexes [Fe(LH)2](ClO4)2 and [Fe(LF)2](ClO4)2. Analysis of the temperature dependence of their 1H NMR chemical shifts confirmed that both complexes remain in a high-spin state. Using the same approach, the possibility of in situ reversible deprotonation of the pH-sensitive hydroxyl groups in their ligands under the action of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) was demonstrated, and the potential for shifting the spin equilibrium via deprotonation was investigated.

About the authors

E. S. Safiullina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: fluflucat@gmail.com
ORCID iD: 0000-0001-7379-7792
Junior Research Fellow Moscow, Russian Federation; Moscow, Russian Federation

I. A. Nikovskii

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: igornikovsky@mail.ru
ORCID iD: 0000-0001-9594-823X
Candidate of Chemical Sciences, Researcher Moscow, Russian Federation

Yu. V. Nelyubina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Author for correspondence.
Email: yulia.v.nelyubina@gmail.com
ORCID iD: 0000-0002-9121-0040
Doctor of Chemical Sciences, Senior Researcher Moscow, Russian Federation

References

  1. Halcrow M.A., Spin-Crossover Materials: Properties and Applications. Wiley, Oxford (UK), 2013.
  2. Halcrow M.A. //Crystals. 2016. V. 6. № 5. P. 58.
  3. Khusniyarov M.M. //Chem. Eur. J. 2016. V. 22. № 43. P. 15178.
  4. Jeon I.-R., Park J.G., Haney C.R. & Harris T.D. //Chem. Sci. 2014. V. 5. P. 2461.
  5. Venkataramani S., Jana U., Dommaschk M. et al. //Science. 2011. V. 331. № 6016. P. 445.
  6. Thorarinsdottir A.E., Gaudette A.I. & Harris T.D. //Chem. Sci. 2017. V. 8. № 3. P. 2448.
  7. Gaudette A.I., Thorarinsdottir A.E., Harris T.D. //Chem. Comm. 2017. V. 53. № 96. P. 12962.
  8. Luo Y.H., Nihei M., Wen G.J. et al. //Inorg. Chem. 2016. V. 55. № 16. P. 8147.
  9. Dhers S., Mondal A., Aguilà D. et al. //J. Am. Chem. Soc. 2018. V. 140. № 26. P. 8218.
  10. Enamullah M., Linert W. //J. Coord. Chem. 1995. V. 35. № 3–4. P. 325.
  11. Shiga T., Saiki R., Akiyama L. et al. //Angew. Chem. Int. Ed. 2019. V. 58. № 17. P. 5658.
  12. Enamullah M., Linert W., Gutmann V. et al. //Monatsh. Chem. 1994. V. 125. № 12. P. 1301.
  13. Seredyuk M., Znovjyak K.O., Kusz J. et al. //Dalton Trans. 2014. V. 43. № 43. P. 16387.
  14. Seredyuk M., Pineiro-Lopez L., Muñoz M. C. et al. //Inorg. Chem. 2015. V. 54. № 15. P. 7424.
  15. Rabelo R., Toma L., Moliner N. et al. //Chem. Sci. 2023. V. 14. № 33. P. 8850.
  16. Zhao J., Peng Q., Wang Z. et al. //Nat. Commun. 2019. V. 10. № 1. P. 2303.
  17. Nowak R., Prasetyanto E.A., De Cola L. et al. //Chem. Comm. 2017. V. 53. № 5. P. 971.
  18. Shen K.Y., Zhang C.J., Qu L Y. et al. //Inorg. Chem. 2021. V. 60. № 23. P. 18225.
  19. Chen X.Q., Cai Y.D., Jiang W. et al. //Inorg. Chem. 2019. V. 58. № 2. P. 999.
  20. Ye Y.S., Chen X.Q., Shen K.Y. et al. //CCS Chem. 2021. V. 3. № 8. P. 2350.
  21. Halcrow M.A. //Coord. Chem. Rev. 2009. V. 253. № 21–22. P. 2493.
  22. Halcrow M.A. //Coord. Chem. Rev. 2005. V. 249. № 25. P. 2880.
  23. Nikovskiy I.A., Polezhaev A.V., Novikov V.V. et al. //Chem. Eur. J. 2020. V. 26. P. 5629.
  24. Safiullina E.S., Nikovskii I.A., Dan’shina A.A., Nelyubina Y.V. //Russ. J. Coord. Chem. 2024. V. 50. № 11. P. 978.
  25. Polezhaev A.V., Chen C.H., Kinne A.S et al. //Inorg. Chem. 2017. V. 56. № 16. P. 9505.
  26. Nelyubina Y., Polezhaev A., Pavlov A. et al. //Magnetochemistry. 2018. V. 4. № 4. P. 46.
  27. Nikovskiy I.A., Polezhaev A.V., Novikov V.V. et al. //Chem. Eur. J. 2020. V. 26. P. 5629.
  28. Pankratova Y., Aleshin D., Nikovskiy I. et al. //Inorg. Chem. 2020. V. 59. № 11. P. 7700.
  29. Weber B., Walker F. A. //Inorg. Chem. 2007. V. 46. № 16. P. 6794.
  30. Pavlov A.A., Denisov G.L., Kiskin M.A. et al. //Inorg. Chem. 2017. V. 56. № 24. P. 14759.
  31. Nikovskiy I., Aleshin D.Y., Novikov V.V. et al. //Inorg. Chem. 2022. V. 61. № 51. P. 20866.
  32. Creutz S.E., Peters J.C. //Inorg. Chem. 2016. V. 55. № 8. P. 3894.
  33. Barrett S.A., Kilner C.A., Halcrow M.A. //Dalton Trans. 2011. V. 40. № 45. P. 12021.
  34. Slade F., Collingwood J.F., Rogers N.J. //Coord. Chem. Rev. 2024. V. 516. P. 215940.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).