THERMODYNAMIC AND KINETIC FACTORS OF THE STRUCTURE FORMATION OF BIS-CHELATE COMPLEXES OF NI(II) WITH O-HYDROXY- AND O-MERCAPTOAZOBENZAMIDES: A QUANTUM CHEMICAL STUDY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The molecular structures and relative energies of the low-spin bis-chelate Ni(II) complexes with o-hydroxy- and o-mercaptoazobenzene ligands were calculated using density functional theory, taking into account the possibility of forming trans- and cis-isomeric structures with six- and five-membered metallacycles. The kinetic factor governing the structure formation of NiL2 complexes was analyzed using a stepwise model of their formation (Ni2+ + (L) → (NiL)+, (NiL)+ + (L) → NiL2). The results show that the most favorable isomer of the complexes is determined not only by the energy advantage of a particular configuration, but also by its kinetic accessibility, which is governed by the activation barriers of the isomerization reactions of the products formed at the first step of the interaction of the initial reagents.

About the authors

N. N. Kharabaev

Research Institute of Physical and Organic Chemistry, Southern Federal University

Author for correspondence.
Email: nkharabaev@mail.ru
Doctor of Chemical Sciences, Professor, Leading Researcher Rostov-on-Don, Russian Federation

V. I. Minkin

Research Institute of Physical and Organic Chemistry, Southern Federal University

Email: viminkin@sfedu.ru
Doctor of Chemical Sciences, Professor, Academician of the Russian Academy of Sciences, Scientific Director Rostov-on-Don, Russian Federation

References

  1. Garnovskii A.D., Nivorozhkin A.L., Minkin V.I. // Coord. Chem. Rev. 1993. V. 26. № 1. P. 1.
  2. Bourget-Merle. L., Lappert M.F., Severn J.R. // Chem. Rev. 2002. V. 102. № 6. P. 3031.
  3. Garnovskii A.D., Vasilchenko I.S., Garnovskii D.A., Kharisov B.I. // J. Coord. Chem. 2009. V. 62. № 2. P. 151.
  4. Chen L., Zhong Z., Chen C. et al. // J. Organomet. Chem. 2014. V. 752. Р. 100.
  5. Chandrakala M., Bharath S., Maiyalagan T., Arockiasamy S. // Mater. Chem. Phys. 2017. V. 201. Р. 344.
  6. Conejo M., Cantero J., Pastor A. et al. // Inorg. Chim. Acta. 2018. V. 470. Р. 113.
  7. Nivorozhkin A.L., Nivorozhkin L.E., Minkin V.I. et al. // Polyhedron. 1991. V. 10. Р. 179.
  8. Mistryukov A.E., Vasil’chenko I.S., Sergienko V.S. et al. // Mendeleev Commun. 1992. V. 2. № 1. P. 30.
  9. Fierro C.M., Murphy B.P., Smith P.D. et al. // Inorg. Chim. Acta. 2006. V. 359. P. 2321.
  10. Orysyk S.I., Bon V.V., Pekhnyo V.I. et al. // Polyhedron. 2012. V. 38. P. 15.
  11. Bredenkamp A., Zenq X., Mohr F. // Polyhedron. 2012. V. 33. P. 107.
  12. Kharabayev N.N., Minkin V.I. // Russ. J. Coord. Chem. 2022. V. 48. № 12. P. 765. https://doi.org/10.1134/S1070328422700117
  13. Civadze A.Y., Minacheva L.Kh., Ivanova I.S. et al. // Russ. J. Inorg. Chem. 2009. V. 54. № 2. P. 304.
  14. Ferreira G.R., Marcial B.L., Garcia H.C., et al. // Supramol.Chem. 2015. V. 27. P. 13.
  15. Chetioui S., Rouag D.-A., Djukic J.-P. et al. // Acta Crystallogr. E. 2016. V. 72. P. 1093.
  16. Benosmane A., Gunduz B., Benaouida M.A. et al. // J. Mol. Struct. 2023. V. 1273. P. 134254.
  17. Aldoshin S.M., Alekseenko V.A., Atovmyan L.O. et al. // Russ. J. Coord. Chem. 1975. V. 1. № 8. P. 1075
  18. Dyachenko O.A., Atovmyan L.O. Aldoshin S.M., Tkachev V.V. // J. Struct. Chem. 1978, V. 19. № 6. P. 829.
  19. Aldoshin S.M., Dyachenko O.A., Atovmyan L.O. // Russ. J. Coord. Chem. 1980. V. 6. № 5. P. 778.
  20. Kogan V.A., Kharabaev N.N., Osipov O.A., Kochin S.G. // J. Struct. Chem. 1981. V. 22. № 1. P. 126.
  21. Kharabayev N.N. // Russ. J. Coord. Chem. 2017. Vol. 43. № 12. P. 807. https://doi.org/10.1134/S107032841712003X
  22. Kharabayev N.N. // Russ. J. Coord. Chem. 2019. V. 45. № 8. P. 673. https://doi.org/10.1134/S1070328419080050
  23. Parr R., Yang W. Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989. 333 p.
  24. Frisch M.J., Trucks G.W., Schlegel H.B., et al. Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT, 2013.
  25. Becke A. D. // Phys. Rev. (A). 1988. V. 38. P. 3098.
  26. Lee C., Yang W., Parr R.G. // Phys. Rev. (B). 1988. V. 37. P. 785.
  27. Harvey J.N., Aschi M., Schwarz H., Koch W. // Theor. Chem. Acc. 1998. V. 99. N. 2. Р. 95.
  28. Zhurko G.A., Zhurko D.A. Chemcraft. Version 1.6. URL: http://www.chemcraftprog.com
  29. Kharabaev N.N. // Russ. J. Coord. Chem. 1991. V. 17. № 5. P. 579.
  30. Starikov A.G., Minyaev R.M., Minkin V.I. // Mendeleev Commun. 2009. V. 19. P. 64.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).