The influence of the steric factor on the structure of indium(III) iodide complexes based on substituted o-iminobenzoquinones

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A series of substituted o-iminobenzoquinones (6-((2,6-di-iso-propylphenyl)imino)-2,4-bis(2,4,4-trimethylpentan-2-yl)cyclohexa-2,4-dien-1-one (L1), 4-(tert-butyl)-6-((2,6-di-iso-propylphenyl)imino)-3-methoxycyclohexa-2,4-dien-1-one (L2), and 6-((2,6-di-iso-propylphenyl)imino)-3-methoxy-4-(2,4,4-trimethylpentan-2-yl)cyclohexa-2,4-dien-1-one (L3)) were used to synthesize indium(III) iodide complexes containing the redox-active ligand in its neutral form. The o-iminobenzoquinone L1 was synthesized for the first time. It was found that the structure of the obtained complexes depends on the degree of steric shielding of the carbonyl oxygen atom in the initial o-iminobenzoquinone. The sterically hindered ligand L1 forms a 1:1 adduct with InI3 (complex (L1)InI3 (I)). The absence of a substituent at the 2-position of the o-iminobenzoquinone ring promotes the formation of bis-ligand ionic derivatives {[(L2)2InI2]InI4} (II) and {[(L3)2InI2]InI4} (III). The molecular structures of L1 and the complexes I·0.5toluene, II·toluene·0.5hexane were determined by X-ray diffraction analysis (CCDC deposition numbers: 2440874 (L1), 2440875 (I·0.5toluene), 2440876 (II·toluene·0.5hexane)). The optical and electrochemical properties of the initial o-iminobenzoquinones and their corresponding indium(III) complexes were investigated. It was shown that complexation significantly enhances the oxidative properties of L1, L2, and L3.

About the authors

I. N. Meshcheryakova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: mina@iomc.ras.ru
Russian Federation, Nizhny Novgorod

N. O. Druzhkov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: mina@iomc.ras.ru
Russian Federation, Nizhny Novgorod

T. N. Kocherova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: mina@iomc.ras.ru
Russian Federation, Nizhny Novgorod

R. V. Rumyantcev

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: mina@iomc.ras.ru
Russian Federation, Nizhny Novgorod

M. V. Arsenyev

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: mina@iomc.ras.ru
Russian Federation, Nizhny Novgorod

N. M. Khamaletdinova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: mina@iomc.ras.ru
Russian Federation, Nizhny Novgorod

A. V. Piskunov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: pial@iomc.ras.ru
Russian Federation, Nizhny Novgorod

References

  1. Абакумов Г.А., Климов Е.С., Разуваев Г.А. // Изв. АН. Сер. хим. 1971. С. 1827.
  2. Разуваев Г.А., Абакумов Г.А., Климов Е.С. // Докл. АН СССР. 1971. V. 201. С. 624.
  3. Абакумов Г.А., Климов Е.С. // Докл. АН СССР. 1972. V. 202. С. 827.
  4. Абакумов Г.А., Климов Е.С., Ершов В.В., Белостоцкая Е.С. // Изв. АН. Сер. хим. 1975. С. 927.
  5. Brown M., McGarvey B., Tuck D. // Dalton Trans. 1998. P. 3543. https://doi.org/10.1039/A804124E
  6. Boucher D., Brown M., McGarvey B., Tuck D. // Dalton Trans. 1999. P. 3445. https://doi.org/10.1039/A901758E
  7. Abakumov G., Cherkasov V., Piskunov A.V. et al. // Chem. 2009. V. 427. P. 168.
  8. Mondal M.K., Mukherjee C. // Dalton Trans. 2016. V. 45. P. 13532. https://doi.org/10.1039/C6DT02443B
  9. Anga S., Paul M., Naktode K. et al. // ZAAC, 2012. V. 638. P. 1311. https://doi.org/10.1002/zaac.201200189
  10. Speier G., Csihony, J., Whalen A.M., Pierpont C.G. // Inorg. Chim. Acta. 1996. V. 245. P. 1. https://doi.org/10.1016/0020-1693(95)04792-1
  11. Razborov D.A., Lukoyanov A.N., Makarov V.M. et al. // Russ. Chem. Bull. 2015. V. 64. P. 2377. https://doi.org/10.1007/s11172-015-1166-1
  12. Ivakhnenko, E.P., Koshchienko, Y.V., Chernyshev A.V. et al. // Russ. J. Gen. Chem. 2016. V. 86. P. 1664. https://doi.org/10.1134/S1070363216070227
  13. Piskunov A.V., Pashanova K.I., Bogomyakov et al. // Polyhedron. 2020. V. 186. P. 114610. https://doi.org/10.1016/j.poly.2020.114610
  14. Maity S., Kundu S., Bera S. et al. // Eur. J. Inorg. Chem. 2016. V. 2016. P. 3691. https://doi.org/10.1002/ejic.201600526
  15. Mitra K.N., Goswami S., and Peng S.M. // Chem. Commun. 1998. P. 1685. https://doi.org/10.1039/A804794D
  16. Piskunov A.V., Mescheryakova I.N., Bogomyakov A.S. et al. // Inorg. Chem. Commun. 2009. V. 12. P. 1067. https://doi.org/10.1016/j.inoche.2009.08.023
  17. Coughlin E.J., Qiao Y., Lapsheva et al. // J. Am. Chem. Soc. 2019. V. 141. P. 1016. https://doi.org/10.1021/jacs.8b11302
  18. Coughlin E.J., Zeller M., Bart S.C. // Angew. Chem., Int. Ed. 2017. V. 56. P. 12142. https://doi.org/10.1002/anie.201705423
  19. Sinitsa D.K., Sukhikh T.S., Konchenko S.N., Pushkarevsky N.A. // Polyhedron, 2021. V. 195. P. 114967. https://doi.org/10.1016/j.poly.2020.114967
  20. Lange C.W., Pierpont C.G. // Inorg. Chim. Acta. 1997. V. 263. P. 219. https://doi.org/10.1016/S0020-1693(97)05649-1
  21. Pierpont C.G., Downs H.H. // Inorg. Chem. 1977. V. 16. P. 2970. https://doi.org/10.1021/ic50177a064
  22. Bera S., Maity S., Weyhermüller T., Ghosh P. // Dalton Trans. 2016. V. 45. P. 8236. https://doi.org/10.1039/C6DT00091F
  23. Bera S., Mondal S., Maity S. et al. // Inorg. Chem. 2016. V. 55. P. 4746. https://doi.org/10.1021/acs.inorgchem.6b00040
  24. Cao L.L., Bamford K.L., Liu L.L., Stephan D.W. // Chem. Eur. J. 2018. V. 24. P. 3980. https://doi.org/10.1002/chem.201800607
  25. Pointillart F., Klementieva S., Kuropatov V. et al. // Chem. Commun. 2012. V. 48. P. 714. https://doi.org/10.1039/C1CC16314K
  26. Pointillart F., Kuropatov V., Mitin A. et al. // Eur. J. Inorg. Chem. 2012. V. 2012. P. 4708. https://doi.org/10.1002/ejic.201200121
  27. Raghavan A., Venugopal A. // J. Coord. Chem. 2014. V. 67. P. 2530. https://doi.org/10.1080/00958972.2014.931576
  28. Zhang R., Wang Y., Zhao Y. et al. // Dalton Trans. 2021. V. 50. P. 13634. https://doi.org/10.1039/D1DT02120F
  29. Zwart F.J., Reus B., Laporte A.A.H. et al. // Inorg. Chem. 2021. V. 60. P. 3274. https://doi.org/10.1021/acs.inorgchem.0c03685
  30. Ershova I.V., Meshcheryakova I.N., Trofimova O.Y. // Inorg. Chem. 2021. V. 60. P. 12309. https://doi.org/10.1021/acs.inorgchem.1c01514
  31. Ershova I.V., Meshcheryakova I.N., Trofimova O.Y. et al. // Inorg. Chim. Acta, 2022. V. 539. P. 121031. https://doi.org/10.1016/j.ica.2022.121031
  32. Baker R.J., Farley R.D., Jones C. et al. // Dalton Trans. 2002. P. 3844. https://doi.org/10.1039/B206605J
  33. Lukoyanov A.N., Fedushkin I.L., Hummert M., Schumann H. // Russ. Chem. Bull. 2006. V. 55. P. 422. https://doi.org/10.1007/s11172-006-0273-4
  34. Abakumov G.A., Cherkasov. V.K., Piskunov A.V. et al. // Dokl. Chem. 2010. V. 434. P. 237. https://doi.org/10.1134/S0012500810090077
  35. Kocherova T.N., Martyanov K.A., Rumyantcev R.V. et al. // ChemistrySelect. 2024. V. 9. e202401455. https://doi.org/10.1002/slct.202401455
  36. Perrin D.D., Armarego W.L.F., Perrin D.R. Purification of Laboratory Chemicals, Oxford (UK): Pergamon, 1980.
  37. Piskunov A.V., Mescheryakova I.N., Fukin G.K. et al. // New J. Chem. 2010. V. 34. P. 1746. https://doi.org/10.1039/C0NJ00229A
  38. Абакумов Г.А., Дружков Н.О., Курский Ю.А., Шавырин А.С. // Изв. АН. Сер. хим. 2003. C. 682.
  39. SAINT. Data Reduction and Correction Program. Madison (WI): Bruker AXS, 2014.
  40. Rigaku Oxford Diffraction. CrysAlis Pro software system. Wroclaw (Poland): Rigaku Corporation, 2023.
  41. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. P. 3. https://doi.org/10.1107/S1600576714022985
  42. Sheldrick G. // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  43. Sheldrick, G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  44. Guzei I. A., Wendt M. Program Solid-G. UW-Madison (WI, USA), 2004.
  45. Kocherova T.N., Druzhkov N.O., Arsenyev M.V. et al. // Russ. Chem. Bull. 2023. V. 72. P. 1192. https://doi.org/10.1007/s11172-023-3889-8
  46. Guzei I.A., Wendt M. // Dalton Trans. 2006. P. 3991. https://doi.org/10.1039/B605102B
  47. Fukin G.K., Guzei I.A., Baranov E.V. // J. Coord. Chem. 2007. V. 60. P. 937. https://doi.org/10.1080/00958970600987933
  48. Batsanov S. // Russ. J. Inorg. Chem. 1991. V. 36. P. 1694.
  49. Addison A.W., Rao T.N., Reedijk J. et al. // Dalton Trans. 1984. P. 1349. https://doi.org/10.1039/DT9840001349
  50. Okuniewski A., Rosiak D., Chojnacki J., Becker B. // Polyhedron. 2015. V. 90. P. 47. https://doi.org/10.1016/j.poly.2015.01.035
  51. Rosiak D., Okuniewski A., Chojnacki J. // Polyhedron. 2018. V. 146. P. 35. https://doi.org/10.1016/j.poly.2018.02.016
  52. Brown S.N. // Inorg. Chem. 2012. V. 51. P. 1251. https://doi.org/10.1021/ic202764j
  53. Surendra K., Corey E. // J. Am. Chem. Soc. 2014. V. 136. P. 10918. https://doi.org/10.1021/ja506502p
  54. Prasanna M., Row T.G. // Cryst. Eng. 2000. V. 3. P. 135. https://doi.org/10.1016/S1463-0184(00)00035-6
  55. Shen Q.J., Pang X., Zhao X.R. et al. // CrystEngComm. 2012. V. 14. P. 5027. https://doi.org/10.1039/C2CE25338K

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).