Coordination compounds of uranyl nitrate with several amide ligands

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Reactions of UO2(NO3)2 with an amide L (L = acetamide, N,N-dimethylacetamide, propanamide, valeramide, benzamide, N-methylurea) in aqueous media resulted in formation of 6 coordination compounds [UO2(L)2(NO3)2], their compositions and structures were determined by elemental analysis, IR-spectroscopy, RFA and X-ray diffraction. The molecular structure and assignment of absorption bands for the obtained compounds are confirmed by quantum-chemical calculations.

Full Text

Restricted Access

About the authors

M. S. Polukhin

MIREA – Russian Technological University

Email: savinkina@mirea.ru

Lomonosov Institute of Fine Chemical Technologies

Russian Federation, Moscow

E. V. Savinkina

MIREA – Russian Technological University

Author for correspondence.
Email: savinkina@mirea.ru

Lomonosov Institute of Fine Chemical Technologies

Russian Federation, Moscow

I. A. Karavaev

MIREA – Russian Technological University

Email: savinkina@mirea.ru

Lomonosov Institute of Fine Chemical Technologies

Russian Federation, Moscow

P. V. Akulinin

MIREA – Russian Technological University

Email: savinkina@mirea.ru

Lomonosov Institute of Fine Chemical Technologies

Russian Federation, Moscow

G. A. Buzanov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: savinkina@mirea.ru
Russian Federation, Moscow

A. S. Kubasov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: savinkina@mirea.ru
Russian Federation, Moscow

M. S. Grigoriev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: savinkina@mirea.ru
Russian Federation, Moscow

S. B. Strashnova

RUDN University

Email: savinkina@mirea.ru

Faculty of Physics and Mathematics and Natural Sciences

Russian Federation, Moscow

References

  1. Filines N., Arrachart G., Giusty F. et al. // New J. Chem. 2021. V. 45. № 12. P. 12798. https://doi.org/10.1039/D1NJ02077C
  2. Berger C., Marie C., Guillaumont D. et al. // Inorg. Chem. 2020. V. 59. № 3. P. 1823. https://doi.org/10.1021/acs.inorgchem.9b03024
  3. Preston J.S., du Preez AC. // Solvent Extr. Ion Exch. 1995. V. 13. № 3. P. 391. https://doi.org/10.1080/07366299508918282
  4. Rao A., Kumar P, Tomar B. // Sep. Purif. Technol. 2014. V. 134. № 25. P. 126. https://doi.org/10.1016/j.seppur.2014.07.036
  5. Alyapyshev M., Babain V., Kirsanov D. // Energies. 2022. V. 15. № 19. P. 7380. https://doi.org/10.3390/en15197380
  6. Vats B.G., Das D., Sundhu B. et al. // Dalton Trans. 2016. V. 45. № 25. P. 10319. https://doi.org/10.1039/C6DT01191H
  7. McCann K., Drader J.A., Braley J.C. // Sep. Purif. Rev. 2018. V. 47. № 1. P. 49. https://doi.org/10.1080/15422119.2017.1321018
  8. Gresham G.L., Dinescu A., Benson M.T. et al. // J. Phys. Chem. A. 2011. V. 115. P. 3497. https://doi.org/dx.doi.org/10.1021/jp109665a
  9. Марков В.П., Цапкина И.В. // Журн. неорган. химии. 1962. Т. 7. № 9. С. 2045. (Markov V.P., Tsapkina I.V. // Russ. J. Inorg. Chem. 1962. V. 7. P. 1057).
  10. Siracusa G., Seminara A., Cucinotta V., Gurrieri S. // Thermochim. Acta. 1978. V. 23. № 1. P. 109. https://doi.org/10.1016/0040-6031(78)85116-8
  11. Gentile P.S., Campisi L.S. // J. Inorg. Nucl. Chem. 1965. V. 27. № 11. P. 2291. https://doi.org/10.1016/0022-1902(65)80119-1
  12. Kostyuk N.N. // Radiochemistry. 2005. V. 47. № 1. P. 153. https://doi.org/10.1007/s11137-005-0063-0
  13. Abate L., Siracusa G., Grasso D. // Thermochim. Acta. 1980. V. 42. № 2. P. 177. https://doi.org/10.1016/0040-6031(80)87101-2
  14. Zalkin A., Ruben H., Templeton H. // Inorg. Chem. 1979. V. 18. № 2. P. 519. https://doi.org/10.1021/ic50192a070
  15. Dalley N.K., Mueller M.H., Simonsen S.H. // Inorg. Chem. 972. V. 11. № 8. P. 1840. https://doi.org/10.1021/ic50114a020
  16. Acher E., Cherkaski Y.H., Dumas T. et al. // Inorg. Chem. 2016. V. 55. № 11. P. 5558. https://doi.org/10.1021/acs.inorgchem.6b00592
  17. Loubert G., Volkringer C., Henry N. et al. // Polyhedron. 2017. V. 138. № 14. P. 7. https://doi.org/10.1016/j.poly.2017.09.006
  18. Loubert G., Henry N., Volkringer C. et al. // Inorg. Chem. 2020. V. 59. № 16. P. 11459. https://doi.org/10.1021/acs.inorgchem.0c01258
  19. Nobuyoshi K., Masayuki H., Masanobu N. et al. // Inorg. Chim. Acta. 2005. V. 358. № 6. P. 1857. https://doi.org/10.1016/j.ica.2004.12.036
  20. Suzuki T., Takao K., Kawasaki T. et al. // Polyhedron. 2015. V. 96. № 16. P. 102. https://doi.org/10.1016/j.poly.2015.04.034
  21. Varga T.R., Sato M., Fazekas, Z. et al. // Inorg. Chem. Comm. 2000. V. 3. № 11. P. 637. https://doi.org/10.1016/S1387-7003(00)00123-4
  22. Takao K., Noda K., Morita Y. et al. // Cryst. Growth Des. 2008. V.8. № 7. P.2364. https://doi.org/10.1021/cg7012254
  23. Bruker, SAINT, Bruker AXS Inc., Madison, WI, 2018.
  24. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
  25. Sheldrick G.M. SADABS. Madison (WI, USA): Bruker AXS, 2008.
  26. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. № 1. P. 112. https://doi.org/10.1107/S0108767307043930
  27. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 714. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  28. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  29. Лайков Д.Н., Устынюк Ю.А. // Изв. РАН/ Сер. хим. 2005. Т. 54. № 3. С. 804. (Laikov D.N., Ustynyuk Yu.A. // Russ. Chem. Bull. 2005. V. 54. № 3. P. 820). https://doi.org/10.1007/s11172-005-0329-x
  30. Handy N.C., Cohen A.J. // Mol. Phys. 2001. V. 99. P. 403. https://doi.org/10.1080/00268970010018431
  31. Laikov D.N. // J. Chem. Phys. 2019. V. 150. P. 061103. https://doi.org/10.1063/1.5082231
  32. Laikov D.N. // Chem. Phys. Lett. 2005. V. 416. P. 116. https://doi.org/10.1016/j.cplett.2005.09.046
  33. Hansen P.E. // Molecules. 2021. V. 26. № 9. P. 2409. https://doi.org/10.3390/molecules26092409
  34. Рукк Н.С., Шамсиев Р.С., Альбов Д.В., Мудрецова С.Н. // Тонкие химические технологии. 2021. Т. 16. № 2. С. 113. (Rukk N.S., Shamsiev R.S., Al’bov D.V., Mudretsova S.N. // Fine Chem. Technol. 2021. V. 16. № 2. P. 113). https://doi.org/10.32362/2410-6593-2021-16-2-113-124
  35. Shi X., Bao W. // Front. Chem. 2021. V. 9. P.723718. https://doi.org/10.3389/fchem.2021.723718
  36. Накамото К. // ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. (Nakamoto K., Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley-Interscience, 1970).
  37. Комяк А.И., Умрейко Д.С., Последович М.Р. // Вест. БГУ. Сер. 1. 2013. № 1. C. 22. https://elib.bsu.by/handle/123456789/90097
  38. Bullock J.I. // J. Inorg. Nucl. Chem. 1967. V. 29. № 9. P.2257. https://doi.org/10.1016/0022-1902(67)80280-X
  39. Caldow G.L., Van Cleave A.B., Eager R.L. // Can. J. Chem. 1960. V. 38. № 6. P. 772. https://doi.org/10.1139/v60-112
  40. De Aquino A.R., Isolani P.C., Zukerman-Schpector J. et al. // J. Alloys Comp. 2001. V. 323. № 12. P. 18. https://doi.org/10.1016/S0925-8388(01)01000-3
  41. Saito Y., Machida K., Uno T. // Spectrochim. Acta. A. 1975. V. 31. № 9–10. P. 1237. https://doi.org/10.1016/0584-8539(75)80179-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Additional Materials
Download (632KB)
3. Fig. 1. Structure of compounds [UO2(L)2(NO3)2], where L = AA (a), PrA (b), MeUr (c) according to X-ray diffraction data.

Download (618KB)
4. Fig. 2. Hydrogen bonds in structure I (a); fragment of the crystal packing of structure I (b).

Download (947KB)
5. Fig. 3. Fragment of the crystal packing of structure III. The dotted lines show the intermolecular hydrogen bonds NH…O.

Download (581KB)
6. Fig. 4. Hydrogen bonds in the structure of V.

Download (241KB)
7. Fig. 5. Hydrogen bonds in structure VI.

Download (557KB)
8. Fig. 6. Equilibrium geometries of compounds [UO2(L)2(NO3)2], where L = BzA (a), DMAA (b), VaA (c) according to quantum chemical calculations.

Download (686KB)

Copyright (c) 2025 Российская академия наук

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».