Donor–acceptor chromophores based on coordination polymers of silicon(IV) and germanium(IV)
- Authors: Arsenyeva K.V.1, Klimashevskaya A.V.1, Maleeva A.V.1, Pashanova K.I.1, Yakushev I.A.2, Dorovatovskii P.V.3, Piskunov A.V.1
-
Affiliations:
- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- National Research Center Kurchatov Institute
- Issue: Vol 51, No 3 (2025)
- Pages: 165-175
- Section: Articles
- URL: https://journals.rcsi.science/0132-344X/article/view/290620
- DOI: https://doi.org/10.31857/S0132344X25030025
- EDN: https://elibrary.ru/LSBTWH
- ID: 290620
Cite item
Abstract
New charge-transfer complexes with pyrazine are synthesized from germanium(IV) and silicon(IV) bis(catecholates): 36Сat2Ge, 35Cat2Ge, and 36Сat2Si (36Сat and 35Cat are 3,6- and 3,5-di-tert-butylpyrocatechol dianions, respectively). The synthesized compounds in the crystalline state are 1D coordination polymers with the octahedral environment of the complexing agent. The electronic absorption spectra of suspensions of the crystalline compounds in Nujol demonstrate an absorption in a range of 450–800 nm causing their intense color. A set of the spectral and theoretical studies indicates that the synthesized metal-organic frameworks of silicon and germanium can be considered as donor–acceptor chromophores with the photoinduced interligand charge transfer between the donor catecholate and acceptor pyrazine ligands.
Full Text

About the authors
K. V. Arsenyeva
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: kselenia22@gmail.com
Russian Federation, Nizhny Novgorod
A. V. Klimashevskaya
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: kselenia22@gmail.com
Russian Federation, Nizhny Novgorod
A. V. Maleeva
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: kselenia22@gmail.com
Russian Federation, Nizhny Novgorod
K. I. Pashanova
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: kselenia22@gmail.com
Russian Federation, Nizhny Novgorod
I. A. Yakushev
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: kselenia22@gmail.com
Russian Federation, Moscow
P. V. Dorovatovskii
National Research Center Kurchatov Institute
Email: kselenia22@gmail.com
Russian Federation, Moscow
A. V. Piskunov
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: kselenia22@gmail.com
Russian Federation, Nizhny Novgorod
References
- Bigdeli F., Lollar C. T., Morsali A. et al. // Angew. Chem. Int. Ed. 2020. V. 59. № 12. P. 4652. https://doi.org/10.1002/anie.201900666
- Cui Y., Li B., He H. et al. // Acc. Chem. Res. 2016. V. 49. № 3. P. 483. 10.1021/acs.accounts.5b00530
- Tan Y.X., Wang F., Zhang J. // Chem. Soc. Rev. 2018. V. 47. № 6. P. 2130. https://doi.org/10.1039/c7cs00782e
- Yin H.Q., Wang X.Y., Yin X.B. // J. Am. Chem. Soc. 2019. V. 141. № 38. P. 15166. https://doi.org/10.1021/jacs.9b06755
- R. Dong, Z. Zhang, D.C. Tranca, et al. // Nat. Commun. 2018. V. 9. № 1. P. 2637. https://doi.org/10.1038/s41467-018-05141-4
- Song X., Wang X., Li Y. et al. // Angew. Chem. Int. Ed. 2020. V. 59. № 3. P. 1118. https://doi.org/10.1002/anie.201911543
- Yang C., Dong R., Wang M. et al. // Nat. Commun. 2019. V. 10. № 1. P. 3260. https://doi.org/10.1038/s41467-019-11267-w
- Liu X., Wang B., Huang X. et al. // J. Am. Chem. Soc. 2021. V. 143. № 15. P. 5779. https://doi.org/10.1021/jacs.1c00601
- Tian Y., Shen S., Con J. et al. // J. Am. Chem. Soc. 2016. V. 138. № 3. P. 782. https://doi.org/10.1021/jacs.5b12488
- Miner E.M., Fukushima T., Sheberla D. et al. // Nat. Commun. 2016. V. 7. P. 10942. https://doi.org/10.1038/ncomms10942
- Zhong H., Ly K.H., Wang M. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 31. P. 10677. https://doi.org/10.1002/anie.201907002
- Campbell M.G., Sheberla D., Liu S.F. et al. // Angew. Chem. Int. Ed. 2015. V. 54. № 14. P. 4349. https://doi.org/10.1002/anie.201411854
- Wu G., Huang J., Zang Y. et al. // J. Am. Chem. Soc. 2017. V. 139. № 4. P. 1360. https://doi.org/10.1021/jacs.6b08511
- Sheberla D., Bachman J.C., Elias J.S. et al. // Nat. Mater. 2017. V. 16. № 2. P. 220. https://doi.org/10.1038/nmat4766.
- Miyasaka H.// Acc. Chem. Res. 2013. V. 46. № 2. P. 248. https://doi.org/10.1021/ar300102t
- Lu W., Wei Z., Gu Z.Y. et al. // Chem. Soc. Rev. 2014. V. 43. P. 5561. https://doi.org/10.1039/c4cs00003j
- Xie L.S., Alexandrov E.V., Skorupskii G., et al. // Chem. Sci. 2019. V. 10. № 37. P. 8558. https://doi.org/10.1039/c9sc03348c
- McEvoy J.P., Brudvig G.W. // Chem. Rev. 2006. V. 106. № 11. P. 4455. https://doi.org/10.1021/cr0204294
- Deria P., Yu J., Smith T., Balaraman R.P. // J. Am. Chem. Soc. 2017. V. 139. № 16. P. 5973. https://doi.org/10.1021/jacs.7b02188
- Yin J.-X., Huo P., Wang S. et al. // J. Mater. Chem. C. 2015. V. 3. № 2. P. 409. https://doi.org/10.1039/c4tc02009j
- Guo Z., Panda D.K., Maity K. et al. // J. Mater. Chem. C. 2016. V. 4. № 5. P. 894. https://doi.org/10.1039/c5tc02232k
- Park S.S., Rieth A.J., Hendon C.H. Dinca M. // J. Am. Chem. Soc. 2018. V. 140. № 6. P. 2016. https://doi.org/10.1021/jacs.7b12784
- Qu L., Iguchi H., Takaishi S. et al. // J. Am. Chem. Soc. 2019. V. 141. № 7. P. 6802. https://doi.org/10.1021/jacs.9b01717
- Roy S., Huang Z., Bhunia A. et al. // J. Am. Chem. Soc. 2019. V. 141. № 40. P. 15942. https://doi.org/10.1021/jacs.9b0708.
- Zhong M., Kong L., Zhao K. et al. // Adv. Sci. 2021. V. 8. № 4. 2001980. https://doi.org/10.1002/advs.202001980
- Qiu Y.R., Cui L., Cai P.Y. et al. // Chem. Sci. 2020. V. 11. № 24. P. 6229. https://doi.org/10.1039/d0sc02388d
- Su J., Hu T.H., Murase R. et al. // Inorg. Chem. 2019. V. 58. № 6. P. 3698. https://doi.org/10.1021/acs.inorgchem.8b03299
- Wang H.Y., Ge J.Y., Hua C. et al. // Angew. Chem. Int. Ed. 2017. V. 56. № 20. P. 5465. https://doi.org/10.1002/anie.201611824
- Calbo J., Golomb M.J., Walsh A. // J. Mater. Chem. A. 2019. V. 7. № 28. P. 16571. https://doi.org/10.1039/c9ta04680a
- Dolgopolova E.A., Rice A.M., Martin C.R. et al. // Chem. Soc. Rev. 2018. V. 47. № 13. P. 4710. https://doi.org/10.1039/C7CS00861A
- Haldar R., Heinke L., Woll C. // Adv. Mater. 2020. V. 32. № 20. P. e1905227. https://doi.org/10.1002/adma.201905227
- Haldar R., Matsuda R., Kitagawa S. et al. // Angew. Chem. Int. Ed. 2014. V. 53. № 44. P. 11772. https://doi.org/10.1002/anie.201405619
- Akbulatov A.F., Akyeva A.Y., Shangin P.G. et al. // Membranes. 2023. V. 13. № 4. P. https://doi.org/10.3390/membranes13040439
- Arsenyeva K.V., Klimashevskaya A.V., Maleeva A.V. et al. // ChemPlusChem. 2024. № 89. Р. e202400504. https://doi.org/10.1002/cplu.202400504
- Klimashevskaya A.V., Arsenyeva K.V., Maleeva A.V. et al. // Eur. J. Inorg. Chem. 2023. V. 26. № 36. P. e202300540. https://doi.org/10.1002/ejic.202300540
- Nikolaevskaya E.N., Saverina E.A., Starikova A.A. et al. // Dalton Trans. 2018. V. 47. № 47. P. 17127. https://doi.org/10.1039/c8dt03397h
- Малеева А.В., Трофимова О.Ю., Ершова И.В. и др. // Изв. АН. Сер. хим. 2022. V. 71. № 7. P. 1441 (Мaleeva А.V., Тrofimova Yu О., Еrshova I.V. et al. // Russ. Chem. Bull. 2022. V. 71. № 7. P. 1441). https://doi.org/10.1007/s11172-022-3550-y
- Aрсеньева К.В., Климашевская А.В., Арсеньев М.В. и др. // Изв. АН. Сер. хим. 2024. V. 73. № 1. P. 117 (Arsenyeva К. V., Кlimashevskaya А. V., Аrsenyev М. V. et al. // Russ. Chem. Bull. 2024. V. 73. № 1. P. 117). https://doi.org/10.1007/s11172-024-4123-z
- Климашевская А.В., Арсеньева К.В., Черкасов А.В и др. // Журн. структур. химии. 2023. V. 64. № 12. Р. 118910. https://doi.org/10.26902/JSC_id118910
- Perrin D.D., Armarego W.L.F., Perrin D.R. // Purification of Laboratory Chemicals., Oxford: Pergamon Press, 1980.
- Ладо A.В., Пискунов A.В, Жданович И.В. и др. // Коорд. химия. 2008. V. 34. № 4. P. 258 (Lado A.V., Piskunov A.V., Zhdanovich I.V. et al. // Russ. J. Coord. Chem. 2008. № 34. P. 251. https://doi.org/10.1134/S1070328408040027
- Rivière P., Castel A., Satgé J. et al. // J. Organomet. Chem. 1986. V. 315. № 2. P. 157. https://doi.org/10.1016/0022-328X(86)80434-X
- Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. № 5. 1900184. https://doi.org/10.1002/crat.201900184
- Kabsch W. // Acta Crystallogr. D. 2010. V. 66. № 2. P. 125. https://doi.org/10.1107/S0907444909047337
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/s0021889808042726
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09. Revision D.01. Wallingford (CT, USA): Gaussian, Inc., 2013.
- Pritchard B.P., Altarawy D., Didier B. et al. // J. Chem. Inf. Model. 2019. V. 59. № 11. P. 4814. https://doi.org/10.1021/acs.jcim.9b00725
- Lou D., Yutronkie N. J., Oyarzabal I. et al. // J. Am. Chem. Soc. 2024. V. 146. № 29. P. 19649. https://doi.org/10.1021/jacs.4c05756
- Monroe J.C., Landee C.P., Turnbull M.M. et al. // J. Coord. Chem. 2024. V. 77. № 9–10. P. 967. https://doi.org/10.1080/00958972.2024.2344711
- Bibik Y.S., Fritsky I.O., Kucheriv O.I. et al. // J. Mol. Struct. 2024. V. 1318. P. 139302. https://doi.org/10.1016/j.molstruc.2024.139302
- Abbasova G.G., Ismayilov R.H., Tagiyev D.B. et al. // J. Mol. Struct. 2024. V. 1315. P. 138896. https://doi.org/10.1016/j.molstruc.2024.138896
- Buzoverov M.E., Lermontova E.Kh., Volkova O.S. et al. // Eur. J. Inorg. Chem. 2024. V. 27. № 20. Р. e202400150. https://doi.org/10.1002/ejic.202400150
- Малеева A.В., Трофимова O.Ю., Кочерова T.Н. и др. // Коорд. химия. 2023. V. 49. № 11. P. 693 (Maleeva A.V., Trofimova O.Y., Kocherova T.N. et al. // Russ. J. Coord. Chem. 2023. V. 49. P. 718). https://doi.org/10.31857/s0132344x23600315
- Пискунов А.В., Малеева А.В., Богомяков А.С. и др. // Коорд. химия. 2019. V. 45. № 5. P. 259 (Piskunov A.V., Maleeva A.V., Bogomyakov A.S. et al. // Russ. J. Coord. Chem. 2019. V. 45. № 5. P. 309). https://doi.org/10.1134/s0132344x19050025
- Hartmann D., Braner S., Greb L. // Chem. Commun. 2021. V. 57. № 69. P. 8572. https://doi.org/10.1039/d1cc03452a
- Chen K.-H., Liu Y.-H., Chiu C.-W. // Organometallics. 2020. V. 39. № 24. P. 4645. https://doi.org/10.1021/acs.organomet.0c00671
- Glavinović M., Krause M., Yang L. et al. // Sci. Adv. 2017. № 3. P. e1700149. https://doi.org/10.1126/sciadv.1700149
- Liberman-Martin A.L., Levine D.S., Liu W. et al. // Organometallics. 2016. V. 35. № 8. P. 1064. https://doi.org/10.1021/acs.organomet.5b01003
- Asadi A., Eaborn C., Hill M.S. et al. // Organometallics. 2002. № 21. P. 2430. https://doi.org/10.1021/om020106y
- Brown S.N. // Inorg. Chem. 2012. V. 51. № 3. P. 1251. https://doi.org/10.1021/ic202764j.
- Ладо A.В., Пискунов A.В., Черкасов А.В. и др. // Коорд. химия. 2006. V. 32. № 3. P. 181 (Lado A.V., Piskunov A.V., Cherkasov V.K. et al. // Russ. J. Coord. Chem. 2006. V. 32. № 3. P. 173). https://doi.org/10.1134/s1070328406030031
- Chegerev M.G., Piskunov A.V., Maleeva A.V. et al. // Eur. J. Inorg. Chem. 2016. V. 2016. № 23. P. 3813. https://doi.org/10.1002/ejic.201600501
Supplementary files
