Nickel(II) Complex with the Bis(phenolate) Pincer N-Heterocyclic Carbene Ligand: Synthesis, Structure, and Properties
- Authors: Gafurov Z.N.1, Mikhailov I.K.1, Kagilev A.A.1,2, Sakhapov I.F.1, Kantyukov A.O.1,2, Zueva E.M.3, Dobrynin A.B.1, Trifonov A.A.4, Yakhvarov D.G.2
-
Affiliations:
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences
- Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University
- Kazan National Research Technological University
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
- Issue: Vol 51, No 1 (2025)
- Pages: 3-11
- Section: Articles
- URL: https://journals.rcsi.science/0132-344X/article/view/289684
- DOI: https://doi.org/10.31857/S0132344X25010011
- EDN: https://elibrary.ru/MHPVFM
- ID: 289684
Cite item
Abstract
About the authors
Z. N. Gafurov
Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences
Email: gafurov.zufar@iopc.ru
Kazan, Russia
I. K. Mikhailov
Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of SciencesKazan, Russia
A. A. Kagilev
Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences; Butlerov Institute of Chemistry, Kazan (Volga Region) Federal UniversityKazan, Russia; Kazan, Russia
I. F. Sakhapov
Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of SciencesKazan, Russia
A. O. Kantyukov
Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences; Butlerov Institute of Chemistry, Kazan (Volga Region) Federal UniversityKazan, Russia; Kazan, Russia
E. M. Zueva
Kazan National Research Technological UniversityKazan, Russia
A. B. Dobrynin
Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of SciencesKazan, Russia
A. A. Trifonov
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of SciencesMoscow, Russia
D. G. Yakhvarov
Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University
Email: yakhvar@iopc.ru
Kazan, Russia
References
- Lapshin I.V., Cherkasov A.V., Lyssenko K.A. et al. // Inorg. Chem. 2022. V. 61. № 24. P. 9147. https://doi.org/10.1021/acs.inorgchem.2c00698
- Borré E., Dahm G., Aliprandi A. et al. // Organometallics. 2014. V. 33. № 17. P. 4374. https://doi.org/10.1021/om5003446
- Fosu E., Le N., Abdulraheem T. et al. // Organometallics 2024. V. 43. № 4. P. 467. https://doi.org/10.1021/acs.organomet.3c00411
- Sheng H., Liu Q., Su X.-D. et al. // Org. Lett. 2020. V. 22. № 18. P. 7187. https://doi.org/10.1021/acs.orglett.0c02523
- Li J., Wang L., Zhao Z. et al. // Angew. Chemie Int. Ed. 2020. V. 59. № 21. P. 8210. https://doi.org/10.1002/anie.201916379
- Rao J., Dong S., Yang C. et al. // J. Am. Chem. Soc. 2023. V. 145. № 47. P. 25766. https://doi.org/10.1021/jacs.3c09280
- Karaaslan M.G., Aktaş A., Gürses C. et al. // Bioorg. Chem. 2020. V. 95. P. 103552. https://doi.org/10.1016/j.bioorg.2019.103552
- Gafurov Z.N., Kantyukov A.O., Kagilev A.A. et al. // Russ. Chem. Bull. 2017. V. 66. № 9. P. 1529. https://doi.org/10.1007/s11172-017-1920-7
- Zhao Q., Meng G., Nolan S.P. et al. // Chem. Rev. 2020. V. 120. № 4. P. 1981. https://doi.org/10.1021/acs.chemrev.9b00634
- Sau S.C., Hota P.K., Mandal S.K. et al. // Chem. Soc. Rev. 2020. V. 49. № 4. P. 1233. https://doi.org/10.1039/c9cs00866g
- Zhao Q., Han B., Peng C. et al. // Med. Res. Rev. 2024. https://doi.org/10.1002/med.22039
- Bellotti P., Koy M., Hopkinson M.N. et al. // Nat. Rev. Chem. 2021. V. 5. № 10. P. 711. https://doi.org/10.1038/s41570-021-00321-1
- Ibáñez S., Poyatos M., Peris E. // Acc. Chem. Res. 2020. V. 53. № 7. P. 1401. https://doi.org/10.1021/acs.accounts.0c00312
- Ott I. // Adv. Inorg. Chem. 2020. V. 75. P. 121. https://doi.org/10.1016/bs.adioch.2019.10.008
- Liang Q., Song D. // Chem. Soc. Rev. 2020. V. 49. № 4. P. 1209. https://doi.org/10.1039/c9cs00508k
- Strausser S.L., Jenkins D.M. // Organometallics. 2021. V. 40. № 11. P. 1706. https://doi.org/10.1021/acs.organomet.1c00189
- Kashina M.V., Luzyanin K.V., Katlenok E.A. et al. // Dalton Trans. 2022. V. 51. № 17. P. 6718. https://doi.org/10.1039/d2dt00252c
- Zhan L., Zhu M., Liu L. et al. // Inorg. Chem. 2021. V. 60. № 21. P. 16035. https://doi.org/10.1021/acs.inorgchem.1c01964
- Bernd M.A., Bauer E.B., Oberkofler J. et al. // Dalton Trans. 2020. V. 49. № 40. P. 14106. https://doi.org/10.1039/d0dt02598d
- Sánchez A., Sanz-Garrido J., Carrasco C.J. et al. // Inorg. Chim. Acta. 2022. V. 537. P. 120946. https://doi.org/10.1016/j.ica.2022.120946
- Li M., Liska T., Swetz A. et al. // Organometallics. 2020. V. 39. № 10. P. 1667. https://doi.org/10.1021/acs.organomet.0c00065
- Rendón-Nava D., Angeles-Beltrán D., Rheingold A.L. et al. // Organometallics. 2021. V. 40. № 13. P. 2166. https://doi.org/10.1021/acs.organomet.1c00324
- Rivera C., Bacilio-Beltrán H.A., Puebla-Pérez A.M. et al. // New J. Chem. 2022. V. 46. № 29. P. 14221. https://doi.org/10.1039/d2nj02508f
- Neshat A., Mastrorilli P., Mobarakeh A.M. // Molecules. 2022. V. 27. № 1. P. 95. https://doi.org/10.3390/molecules27010095
- Díez-González S., Marion N., Nolan S.P. // Chem. Rev. 2009. V. 109. № 8. P. 3612. https://doi.org/10.1021/cr900074m
- Pearson R.G. // Inorg. Chem. 1973. V. 12. № 3. P. 712. https://doi.org/10.1021/ic50121a052
- Pearson R.G. // Inorg. Chem. 1988. V. 27. № 4. P. 734. https://doi.org/10.1021/ic00277a030
- Gunanathan C., Milstein D. // Chem. Rev. 2014. V. 114. № 24. P. 12024. https://doi.org/10.1021/cr5002782
- Maser L., Vondung L., Langer R. // Polyhedron. 2018. V. 143. P. 28. https://doi.org/10.1016/j.poly.2017.09.009
- Taakili R., Canac Y. // Molecules. 2020. V. 25. № 9. P. 2231. https://doi.org/10.3390/molecules25092231
- Gandara C., Philouze C., Jarjayes O. et al. // Inorg. Chim. Acta. 2018. V. 482. P. 561. https://doi.org/10.1016/j.ica.2018.06.046
- Nolan S.P. // N-Heterocyclic Carbenes Eff. Tools Organomet. Synth. 2014. V. 9783527334. P. 1. https://doi.org/10.1002/9783527671229
- Dröge T., Glorius F. // Angew. Chem. Int. Ed. 2010. V. 49. № 39. P. 6940. https://doi.org/10.1002/anie.201001865
- Wittwer B., Leitner D., Neururer F.R. et al. // Polyhedron. 2024. V. 250. P. 116786. https://doi.org/10.1016/j.poly.2023.116786
- Chesnokov G.A., Topchiy M.A., Dzhevakov P.B. et al. // Dalton Trans. 2017. V. 46. № 13. P. 4331. https://doi.org/10.1039/c6dt04484k
- Meng G., Kakalis L., Nolan S.P. et al. // Tetrahedron Lett. 2019. V. 60. № 4. P. 378. https://doi.org/10.1016/j.tetlet.2018.12.059
- Luconi L., Gafurov Z., Rossin A. et al. // Inorg. Chim. Acta. 2018. V. 470. P. 100. https://doi.org/10.1016/j.ica.2017.03.026
- Luconi L., Garino C., Cerreia Vioglio P. et al. // ACS Omega. 2019. V. 4. № 1. P. 1118. https://doi.org/10.1021/acsomega.8b02452
- Luconi L., Tuci G., Gafurov Z.N. et al. // Inorg. Chim. Acta. 2020. V. 517. P. 120182. https://doi.org/10.1016/j.ica.2020.120182
- Gafurov Z.N., Kantyukov A.O., Kagilev A.A. et al. // Russ. J. Electrochem. 2021. V. 57. № 2. P. 134. https://doi.org/10.1134/S1023193521020075
- Gafurov Z.N., Kagilev A.A., Kantyukov A.O. et al. // Russ. Chem. Bull. 2018. V. 67. № 3. P. 385. https://doi.org/10.1007/s11172-018-2086-7
- Gafurov Z.N., Bekmukhamedov G.E., Kagilev A.A. et al. // J. Organomet. Chem. 2020. V. 912. P. 121163. https://doi.org/10.1016/j.jorganchem.2020.121163
- Kagilev A.A., Gafurov Z.N., Sakhapov I.F. et al. // J. Electroanal. Chem. 2024. V. 956. P. 118084. https://doi.org/10.1016/j.jelechem.2024.118084
- Gurina G.A., Markin A.V., Cherkasov A.V. et al. // Eur. J. Inorg. Chem. 2023. V. 26. № 29. P. E202300392. https://doi.org/10.1002/ejic.202300392
- Armarego W.L.F. Purification of Laboratory Chemicals. Amsterdam: Butterworth-Heinemann, 2017.
- Long J., Lyubov D.M., Gurina G.A. et al. // Inorg. Chem. 2022. V. 61. № 3. P. 1264. https://doi.org/10.1021/acs.inorgchem.1c03429
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
- Becke A.D. // J. Chem. Phys. 1993. V. 98. № 7. P. 5648. https://doi.org/10.1063/1.464913
- Stephens P.J., Devlin F.J., Chabalowski C.F. et al. // J. Phys. Chem. 1994. V. 98. № 45. P. 11623. https://doi.org/10.1021/j100096a001
- Dunning T.H. // J. Chem. Phys. 1989. V. 90. № 2. P. 1007. https://doi.org/10.1063/1.456153
- Woon D.E., Dunning T.H. // J. Chem. Phys. 1993. V. 98. № 2. P. 1358. https://doi.org/10.1063/1.464303
- Grimme S., Antony J., Ehrlich S. et al. // J. Chem. Phys. 2010. V. 132. № 15. P. 154104. https://doi.org/10.1063/1.3382344
- Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. V. 32. № 7. P. 1456. https://doi.org/10.1002/jcc.21759
- Casida M.E. // Recent Advances in Computational Chemistry. 1995. V. 1. Pt. 1. P. 155. https://doi.org/10.1142/9789812830586_0005
- Adamo C., Jacquemin D. // Chem. Soc. Rev. 2013. V. 42. № 3. P. 845. https://doi.org/10.1039/c2cs35394f
- Laurent A.D., Adamo C., Jacquemin D. // Phys. Chem. Chem. Phys. 2014. V. 16. № 28. P. 14334. https://doi.org/10.1039/c3cp55336a
- Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297. https://doi.org/10.1039/b508541a
- Weigend F. // Phys. Chem. Chem. Phys. 2006. V. 8. № 9. P. 1057. https://doi.org/10.1039/b515623h
- Peterson K.A., Figgen D., Goll E. et al. // J. Chem. Phys. 2003. V. 119. № 21. P. 11113. https://doi.org/10.1063/1.1622924
- Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018. V. 8. № 1. P. E1327. https://doi.org/10.1002/wcms.1327
Supplementary files
