The role of 2-hydroxypyridine in the formation of pivalate Zn–Gd complexes
- 作者: Nikiforova M.E.1, Kiskin M.A.1, Sidorov A.A.1, Uvarova M.A.1, Eremenko I.L.1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- 期: 卷 51, 编号 2 (2025)
- 页面: 89-102
- 栏目: Articles
- URL: https://journals.rcsi.science/0132-344X/article/view/288792
- DOI: https://doi.org/10.31857/S0132344X25020028
- EDN: https://elibrary.ru/MEJVCY
- ID: 288792
如何引用文章
详细
The reactions of [Zn(Piv)2]n and [Gd(Piv)3]n or Gd(NO3)3 ∙ 6H2O with 2-hydroxypyridine (Hhp) or its 6-methyl derivative (Hmhp) afford heterometallic complexes [ZnGd(Рiv)5(Hhp)2] · 0.5H2O (I), [Zn2Gd (Рiv)6(Hhp)2NO3] ∙ 2C6H6 (II), [Zn3GdO(Рiv)7(Hmhp)2] ∙ MeCN (III) и [Zn2Gd(Рiv)6(Hmhp)2NO3] ∙ ∙ 0.5MeCN (IV) respectively. In the carboxylate metal cage of the synthesized complexes, the Hhp and Hmhp molecules in the form of 2-pyridone are coordinated by the metal atoms via the monodentate mode through the oxygen atoms. The introduction of Et3N into the reaction with [Zn(Рiv)2]n, Gd(NO3)3 ∙ 6H2O, and Hhp is found to result in the formation of compound [Zn4Gd2(OH)2(Рiv)6(hp)6(Hhp)2] (V) in which the 2-hydroxypyridine anions perform the bridging function. The molecular structures of complexes I‒V are determined by XRD (CIF files CCDC nos. 2365419–2365423).
作者简介
M. Nikiforova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: nikiforova.marina@gmail.com
俄罗斯联邦, Moscow
M. Kiskin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: nikiforova.marina@gmail.com
俄罗斯联邦, Moscow
A. Sidorov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: nikiforova.marina@gmail.com
俄罗斯联邦, Moscow
M. Uvarova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: nikiforova.marina@gmail.com
俄罗斯联邦, Moscow
I. Eremenko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: nikiforova.marina@gmail.com
俄罗斯联邦, Moscow
参考
- Bera M.K., Sarmah S., Santra D.C. et al. // Coord. Chem. Rev. 2024. V. 501. P. 215573. https://doi.org/10.1016/j.ccr.2023.215573
- Petrus R., Kowaliński A. // Preprints. 2024. P. 2024020536. https://doi.org/10.20944/preprints202402.0536.v1
- Уварова М.А., Тайдаков И.В., Шмелев М.А. и др. // Коорд. химия. 2023. Т. 49. № 12. С. 744. https://doi.org/10.31857/S0132344X23700329 (Uvarova M.A., Taydakov I.V., Shmelev M.A. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 12. P. 784) https://doi.org/10.1134/s1070328423600882
- Sidorov A.A., Gogoleva N.V., Bazhina E.S. et al. // Pure Appl. Chem. 2020. V. 92. № 7. P. 1093. https://doi.org/10.1515/pac-2019-1212
- Li Y., Yang Y.D., Ge R. et al. // Inorg. Chem. 2022, V. 61. № 23. P. 8746. https://doi.org/10.1021/acs.inorgchem.2c00644
- Wang H.L., Zhu Z.H., Peng J.M. et al. // J. Cluster Sci. 2022. V. 33. № 4. P. 1299. https://doi.org/10.1007/s10876-021-02084-7
- Mata J.A., Hahn F.E., Peris E. // Chem. Sci. 2014. V. 5. № 5. P. 1723. https://doi.org/10.1039/C3SC53126K
- Niekerk A., Chellan P., Mapolie S.F. // Eur. J. Inorg. Chem. 2019. V. 30. P. 3432. https://doi.org/10.1002/ejic.201900375
- De S., Nag S. // Rev. Inorg. Chem. 2024. V. 44. № 1. P. 1. https://doi.org/10.1515/revic-2023-0007
- López-Hernández J.E., Contel M. // Curr. Opin. Chem. Biol. 2023. V. 72. P. 102250. https://doi.org/10.1016/j.cbpa.2022.102250
- Агешина А.А., Уварова М.А., Нефедов С.Е. // Журн. неорган. химии. 2015. Т. 60. № 10. С. 1334. https://doi.org/10.7868/S0044457X15100025 (Ageshina A.A., Uvarova M.A., Nefedov S.E. // Russ. J. Inorg. Chem. 2015. V. 60. № 10. P. 1218) https://doi.org/10.1134/S0036023615100022)
- Уварова М.А., Луценко И.А., Никифорова М.Е. и др. // Коорд. химия. 2022. Т. 48. № 8. С. 451. https://doi.org/10.31857/S0132344X22080072 (Uvarova M.A., Lutsenko I.A., Nikiforova M.E. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 8. P. 457). https://doi.org/10.1134/S1070328422080073
- Зорина-Тихонова Е.Н., Ямбулатов Д.С., Кискин М.А. и др. // Коорд. химия. 2020. Т. 46. № 2. С. 67. https://doi.org/10.31857/S0132344X20020103 (Zorina-Tikhonova E.N., Yambulatov D.S., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 2. P. 75). https://doi.org/10.1134/S1070328420020104
- Uvarova M.A., Lutsenko I.A., Babeshkin K.A. et al. // CrystEngComm. 2023. V. 25. № 48. P. 6786. https://doi.org/10.1039/d3ce00813d
- Гольдберг А.Е., Кискин М.А., Сидоров А.А. и др. // Изв. АН. Сер. хим. 2011. № 5. С. 829 (Goldberg A.E., Kiskin M.A., Sidorov A.A. et al. // Russ. Chem. Bull. 2011. V. 60. № 5. P. 849). https://doi.org/10.1007/s11172-011-0133-8
- Lutsenko I.A., Baravikov D.E., Koshenskova K.A. et al. // RSC Adv. 2022. V. 12. № 9. P. 5173. https://doi.org/10.1039/D1RA08555G
- Rubtsova I.K., Melnikov S.N., Shmelev M.A. et al. // Mendeleev Commun. 2020. V. 30. № 6. P. 722. https://doi.org/10.1016/j.mencom.2020.11.011
- Rad N.E., Junk P., Deacon G.B., Taydakov I. V. et al. // Aust. J. Chem. 2020. V. 73. № 6. P. 520. https://doi.org/10.1071/ch19417
- Petrov P.A., Laricheva Y.A., Sukhikh T.S. et al. // New J. Chem. 2021. V. 45. № 16. P. 7047. https://doi.org/10.1039/d1nj00195g
- Сидоров А.А., Никифорова М.Е., Пахмутова Е.В. и др. // Изв. АН. Сер. хим. 2006. № 11. С. 1851 (Sidorov A.A., Nikiforova M.E., Pakhmutova E.V. et al. // Russ. Chem. Bull. 2006. V. 55. № 11. P. 1920). https://doi.org/10.1007/s11172-006-0533-3
- McConnell S., Motevalli M., Thornton P. // Polyhedron. 1995. V. 14. № 3. P. 459. https://doi.org/10.1016/0277-5387(94)00431-D
- Никифорова М.Е., Каюмова Д.Б., Малкерова И.П. и др. // Коорд. химия. 2023. Т. 49. № 5. С. 290. https://doi.org/10.31857/S0132344X22600333 (Nikiforova M.E., Kayumova D.B., Malkerova I.P. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 5. P. 286). https://doi.org/10.1134/s1070328422600528
- Nikiforova M.E., Kiskin M.A., Bogomyakov A.S. et al. // Inorg. Chem. Commun. 2011. V. 14. № 2. P. 362. https://doi.org/10.1016/j.inoche.2010.11.033
- Заузолкова Н.В., Никифорова М.Е., Кискин М.А. и др. // Изв. АН. Сер. хим. 2011. № 2. С. 267 (Zauzolkova N.V., Nikiforova M.E., Kiskin M.A. et al. // Russ. Chem. Bull. 2011. V. 60. № 2. P. 273). https://doi.org/10.1007/s11172-011-0046-6
- Rosado Piquer L., Dey S., Castilla Amorós L. et al. // Dalton Trans. 2019. V. 48. № 33. P. 12440. https://doi.org/10.1039/c9dt02567g
- Уварова М.А., Агешина А.А., Гринева А.А. и др. // Журн. неорган. химии. 2015. Т. 60. № 5. С. 633. https://doi.org/10.7868/S0044457X15050189 (Uvarova M.A., Ageshina A.A., Grineva A.A. et al. // Russ. J. Inorg. Chem. 2015. V. 60. №. 5. P. 566). https://doi.org/10.1134/S0036023615050186
- Перова Е.В., Яковлева М.A., Баранова Е.О. и др. // Журн. неорган. химии. 2010. Т. 55. № 5. С. 768 (Perova E.V., Yakovleva M.A., Baranova E.O. et al. // Russ. J. Inorg. Chem. 2010. V. 55. № 5. P. 714). https://doi.org/10.1134/S0036023610050104
- Umakoshi K., Yamauchi Y., Nakamiya K. et al. // Inorg. Chem. 2003. V. 42. № 12. P. 3907. https://doi.org/10.1021/ic026196g
- Ardizzoia G.A., La Monica G., Cenini S. et al. // Dalton Trans. 1996. V. 7. P. 1351. https://doi.org/10.1039/DT9960001351
- Miras H.N., Zhao H., Herchel R. et al. // Eur. J. Inorg. Chem. 2008. V. 2008. № 30. P. 4745. https://doi.org/10.1002/ejic.200800349
- Trenerry M.J., Wallen C.M., Brown T.R. et al. // Nat. Chem. 2021. V. 13. № 12. P. 1221. https://doi.org/10.1038/s41557-021-00797-w
- Kawamura T., Maeda M., Miyamoto M. et al. // J. Am. Chem. Soc. 1998. V. 120. № 32. P. 8136. https://doi.org/10.1021/ja9712940
- Cotton F.A., Kim Y., Yokochi A. // Inorg. Chim. Acta. 1995. V. 236. № 1‒2. P. 55. https://doi.org/10.1016/0020-1693(95)04609-D
- Фомина И.Г., Чернышев В.В., Великодный Ю.А. и др. // Изв. АН. Сер. хим. 2013. № 2. С. 429 (Fomina I.G., Chernyshev V.V., Velikodnyi Yu.A. et al. // Russ. Chem. Bull. 2013. V. 62. № 2. P. 427). https://doi.org/10.1007/s11172-013-0057-6
- Доброхотова Ж.В., Фомина И.Г., Александров Г.Г. и др. // Журн. неорган. химии. 2009. Т. 54, № 5. С. 727 (Dobrokhotova Zh.V., Fomina I.G., Aleksandrov G.G. et al. // Russ. J. Inorg. Chem. 2009. V. 54. №. 5. P. 668). https://doi.org/10.1134/S0036023609050040
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- Alvarez S., Avnir D., Llunell M. et al. // New J. Chem. 2002 V. 26. P. 996. https://doi.org/10.1039/B200641N
- Boyle T.J., Raymond R., Boye D.M. et al. // Dalton Trans. 2010. V. 39. № 34. P. 7837. https://doi.org/10.1039/c002492a
- Кискин М.А., Доброхотова Ж.В., Богомяков А.С. и др. // Изв. АН. Сер. хим. 2016. № 6. С. 1488 (Kiskin M.A., Dobrokhotova Z.V., Bogomyakov A.S. et al. // Russ. Chem. Bull. 2016. V. 65, № 6. P. 1488). https://doi.org/10.1007/s11172-016-1475-z
- Li Y., Zhang C., Yu J. et al. // Inorg. Chim. Acta. 2016. V. 445. P. 110. https://doi.org/10.1016/j.ica.2016.02.035
- Boyle T.J., Raymond R., Boye D.M. et al. // Dalton Trans. 2010. V. 39. № 34. P. 8050. https://doi.org/10.1039/c002492a
- Wu B. // J. Chem. Crystallogr. 2003. V. 33. № 3. P. 203. https://doi.org/10.1023/A:1023553627215
- Cui Y., Qian Y.T., Huang J.S. // Polyhedron. 2001. V. 20. №. 15‒16. P. 1795. https://doi.org/10.1016/S0277-5387(01)00714-8
- Егоров Е.Н., Михалева Е.А., Кискин М.А. и др. // Изв. АН. Сер. хим. 2013. № 10. С. 2141 (Egorov E.N., Mikhalyova E.A., Kiskin M.A. et al. // Russ. Chem. Bull. 2013. V. 62. № 10. P. 2141). https://doi.org/10.1007/s11172-013-0313-9
- Бурковская Н.П., Орлова Е.В., Кискин М.А. и др. // Изв. АН. Сер. хим. 2011. № 12. С. 2442 (Burkovskaya N.P., Orlova E.V., Kiskin M.A. et al. // Russ. Chem. Bull. 2011. V. 60. №. 12. P. 2490 https://doi.org/10.1007/s11172-011-0384-4
- Шмелев М.А., Воронина Ю.К., Чекурова С.С. и др. // Коорд. химия. 2021. Т. 47. № 8. С. 489. https://doi.org/10.31857/S0132344X21080089 (Shmelev M.A., Voronina Yu.K., Chekurova S.S. // Russ. J. Coord. Chem. 2021. V. 47. № 8. P. 551). https://doi.org/10.1134/S1070328421080078
- Perrin D.D., Dempsey B., Serjeant E.P. pKa Prediction for Organic Acids and Bases. London: Chapman and Hall, 1981. V. 1. 146 p.
- Kiskin M.A., Varaksina E.A., Taydakov I.V. et al. // Inorg. Chim. Acta. 2018. V. 482. P. 85. https://doi.org/10.1016/j.ica.2018.05.037
- Clegg W., Harbron D. R., Homan C. M. et al. // Inorg. Chim. Acta. 1991. V. 186. № 1. P. 51. https://doi.org/10.1016/S0020-1693(00)87930-X
- Koyama H., Saito Y. // Bull. Chem. Soc. Jpn. 1954. V. 27. № 2. P. 112. https://doi.org/10.1246/bcsj.27.112
- McCowan C.S., Groy T.L., Caudle M.T. // Inorg. Chem. 2002. V. 41. № 5. P. 1120. https://doi.org/10.1021/ic010885v
补充文件
