Heteroleptic ionic copper(I) complexes based on pyrazolo[1,5-a][1,10]phenanthrolines: synthesis, structure, and photoluminescence

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Heteroleptic copper(I) tetrafluoroborate complexes with pyrazolo[1,5-a][1,10]phenanthrolines (Ln, n = 1–3) and bis[(2-diphenylphosphino)phenyl]ether (POP) were synthesized and structurally characterized. The coordination compounds with the general formula [CuLn(POP)]BF4 · Solv (n = 1, Solv = 0.5MeCN, complex I; n = 2, Solv = 0.5CH2Cl2, complex II; n = 3, Solv = 1.25Et2O, complex III · Et2O) were prepared by the reaction of CuBF4 with Ln and POP in organic solvents (MeCN/CH2Cl2/Et2O) at 1 : 1 : 1 molar ratio. Compound III · Et2O gradually loses solvate molecules to be converted to the complex [CuL3(POP)]BF4 (III). According to single-crystal X-ray diffraction data, the complexes (I, II, III · Et2O) are ionic; in complex cation [CuLn(POP)]+ the coordination environment of the copper atom is a distorted tetrahedron with CuN2P2 chromophore. The photoluminescence properties of the obtained complexes (I–III) were studied in the solid state and in solution. In the absorption spectra of the complexes, a charge transfer band is observed at 380–385 nm; excitation in this range gives rise to two emission bands at 480 and 650 nm in solution. In the solid state, the complexes show photoluminescence only in the red range (λmax = 600–610 nm) with microsecond lifetimes. It was found that complexes I and III with a more perfect tetrahedral environment have quantum yields an order of magnitude higher than the quantum yield observed for complex II.

Full Text

Restricted Access

About the authors

K. A. Vinogradova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: kiossarin@mail.ru
Russian Federation, Novosibirsk

M. I. Rakhmanova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: kiossarin@mail.ru
Russian Federation, Novosibirsk

M. D. Taigina

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University (National Research University)

Email: kiossarin@mail.ru
Russian Federation, Novosibirsk; Novosibirsk

N. V. Pervukhina

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: kiossarin@mail.ru
Russian Federation, Novosibirsk

D. Yu. Naumov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: kiossarin@mail.ru
Russian Federation, Novosibirsk

V. A. Sannikova

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: kiossarin@mail.ru
Russian Federation, Novosibirsk

I. R. Filippov

Novosibirsk State University (National Research University); Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: kiossarin@mail.ru
Russian Federation, Novosibirsk; Novosibirsk

D. S. Kolybalov

Novosibirsk State University (National Research University); Center for Collective Use, Siberian Ring Source of Photons (SKIF)

Email: kiossarin@mail.ru
Russian Federation, Novosibirsk; Koltsovo

A. Yu. Vorob’ev

Novosibirsk State University (National Research University); Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: kiossarin@mail.ru
Russian Federation, Novosibirsk; Novosibirsk

References

  1. Li X., Xie Y., Li Z. // Chem. Asian J. 2021. V. 16. № 19. P. 2817.
  2. Yersin H. // Top. Curr. Chem. 2004. V. 241. P. 1.
  3. Czerwieniec R., Leitl M. J., Homeieret H. H.H. et al. // Coord. Chem. Rev. 2016. V. 325. P. 2.
  4. Yersin H., Rausch A. F., Czerwieniec R. et al. // Coord. Chem. Rev. 2011. V. 255. № 21–22. P. 2622.
  5. Li T.Y., Zheng S. J., Djurovich P. I. et al. // Chem. Rev. 2024. V. 124. P. 4332.
  6. Alsaeedi M. S. Current Topics and Emerging Issues in Chemical Science. Morocco: Faculty of Sciences, Sidi Mohamed Ben Abdellah University. V. 1. 2023. P. 104.
  7. Ma D. and Duan L. // Chem. Rec. 2019. V. 19. № 8. P. 1483.
  8. Hu Y.X., Xia X., He W. Z. et al. // Org. Electron. 2019. V. 66. P. 126.
  9. Li T.Y., Wu J., Wu Z. G. et al. // Coord. Chem. Rev. 2018. V. 374. P. 55.
  10. Monkman A. // ACS Appl. Mater. Interfaces. 2022. V. 14. P. 20463.
  11. Tanimoto S., Suzuki T., Nakanotani H. et al. // Chem Lett. 2016. V. 45. № 7. P. 770.
  12. Bergmann L., Zink D. M., Bräse S. et al. // Top. Curr. Chem. 2016. V. 374. № 3. Art 22.
  13. Patil V.V., Hong W. P., Lee J. Y. // Adv. Energy Mater. 2024. Р. 2400258.
  14. Yuan L., Zhang Y. P., Zheng Y. X. // Sci. China Chem. 2024. V. 67 № 4. P. 1097.
  15. Dumur F. // Org. Electronics. 2015. V. 21. P. 27.
  16. Sandoval-Pauker C., Santander-Nelli M., Dreyse P. // RSC Adv. 2022. V. 12. № 17. P. 10653.
  17. Mcmillin D.R., Mcnett K. M. // Chem. Rev. 1998. V. 98. № 3. P. 1201.
  18. Leoni E., Mohanraj J., Holler M. et al. // Inorg. Chem. 2018. V. 57. № 24. P. 15537.
  19. Holler M., Delavaux-Nicot B., Nierengarten J.F. // Chem. Eur. J. 2019. V. 25. № 18. P. 4543.
  20. Armaroli N. // Chem Soc. Rev. 2001. V. 30. № 2. P. 113.
  21. Lavie-Cambot A., Cantuel M., Leydet Y. et al. // Coord. Chem. Rev. 2008. V. 252. № 23–24. P. 2572.
  22. Accorsi G., Listorti A., Yoosaf K. et al. // Chem Soc Rev. 2009. Vol. 38, № 6. P. 1690.
  23. Miao H., Wang P., Huang Z. et al. // Struct. Chem. 2023.V. 34. № 6. Р. 2307.
  24. Zhang X., Wu Z., Xu J. Y. et al. // Polyhedron. 2021. V. 202. P. 115197.
  25. Toigo J., Farias G., Salla C. A.M. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. № 31. P. 3177.
  26. Li C., MacKenzie C.F.R., Said S.A. et al. // Inorg. Chem. 2021. V. 60. № 14. P. 10323.
  27. Jin X.X., Li T., Shi D. P. et al. // New J. Chem. 2020. V. 44. № 31. P. 13393.
  28. Sannikova V.A., Filippov I. R., Karmatskikh O. Y. et al. // Chem. Heterocycl. Compd. 2020. V. 56. № 8. P. 1042.
  29. Malakhova J.A., Berezin A. S., Glebov E. M. et al. // Inorg. Chim. Acta. 2023. V. 555. P. 121604.
  30. Fadeeva V.P., Tikhova V.D., Nikulicheva O.N. // J. Analyt. Chem. 2008. V. 63. № 11. P. 1094.
  31. APEX2 (version 1.08), SAINT (version 7.03), and SADABS (version 2.11). Bruker AXS Inc., 2004.
  32. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3.
  33. Cuttell D.G., Kuang S.M., Fanwick P.E. et al. // J. Am. Chem. Soc. 2002. V. 124. № 1. P. 6.
  34. Yang L., Powell D.R., Houser R.P. // Dalton Trans. 2007. № 9. P. 955.
  35. Allen F.H., Kennard O., Watson D.G. // Perkin Trans. 1987. № 12. P. S1.
  36. Zheng D., Tong Q. // Russ. J. Phys. Chem. A. 023. V. 97. № 13. P. 2942.
  37. Kuang X.N., Lin S., Liu J.M. et al. // Polyhedron. 2019. V. 165. P. 51.
  38. Wang Y.P., Hu X.H., Wang Y.F. et al. // Polyhedron. 2015. V. 102. P. 782.
  39. Si Z., Li X., Li X. et al. // Inorg. Chem. Commun. 2009. V. 12. № 10. P. 1016.
  40. Smith C.S., Branham C.W., Marquardt B.J. et al. // J. Am. Chem. Soc. 2010. V. 132. № 40. P. 14079.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Sch. 1: Synthesis scheme of pyrazolo[1,5-a][1,10]phenanthroline derivatives [28].

Download (170KB)
3. Sch. 2. Scheme for the synthesis of heteroleptic copper(I) complexes.

Download (162KB)
4. Fig. 1. Structure of the complex cation [CuL1(POP)]+ in I, depicted as ellipsoids (50% probability), with atoms numbered. Hydrogen atoms have been omitted for clarity.

Download (606KB)
5. Fig. 2. Structure of the complex cation [CuL2(POP)]+ in II, depicted as ellipsoids (50% probability), with atoms numbered. Hydrogen atoms have been omitted for clarity.

Download (517KB)
6. Fig. 3. Structure of the complex cation [CuL3(POP)]+ in III - Et2O, depicted as ellipsoids (50% probability), with atoms numbered. Hydrogen atoms have been omitted for clarity.

Download (470KB)
7. Fig. 4. FL spectra of compound L3 in CH2Cl2 (a) and in the solid state (b).

Download (333KB)
8. Fig. 5. PL spectra of complex I in CH2Cl2 (a) and in the solid state (b).

Download (303KB)
9. Fig. 6. PL spectra of complex II in CH2Cl2 (a) and in the solid state (b).

Download (303KB)
10. Fig. 7. PL spectra of complex III in CH2Cl2 (a) and in the solid state (b).

Download (317KB)

Copyright (c) 2024 Российская академия наук

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».