Half-Sandwich Iminophosphonamide Rhodium Complexes as Highly Efficient Catalysts for Dehydrogenation of Dimethylamine-Borane

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The dehydrogenation of dimethylamine-borane (DMAB) catalyzed by the iminophosphonamide rhodium(III) complexes [Cp*RhCl{Ph2P(N–p-Tol)(NR)}] (Iа, R = p-Tol; Ib, R = Me) in situ formed fulvene [(η4-C5Me4CH2)Rh(NPN)] (IIa, IIb) and diene [(η4-C5Me5H)Rh(NPN)] (IIIa, IIIb) rhodium(I) derivatives is studied. Catalysts IIIa and IIIb turn out to be the most active and demonstrate a TOF activity of 110 (IIIа) and 540 h–1 (IIIb) at 40°С in toluene. The activity decreases significantly in more polar and coordinating THF. At the same time, the rate of DMAB dehydrogenation by complexes Iа and Ib is lower by 10–30 times, and fulvene complexes Iа and Ib are rapidly deactivated after the active initial period (<20% conversion). The kinetic studies show that the reaction has the first order with respect to the substrate and catalyst. The model 11В NMR experiments confirm that the reaction proceeds via the intermediate formation of a monomer Me2N=BH2, which rapidly dimerizes to (Me2N–BH2)2. The mechanism of DMAB dehydrogenation with the formation of unstable hydride intermediate [Cp*RhH{Ph2P(N–p-Tol)(NR)}] (IVa, IVb) is proposed on the basis of the preliminarily 31Р NMR results and published data.

Full Text

Restricted Access

About the authors

R. I. Nekrasov

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: nataliabelk@ineos.ac.ru
Russian Federation, Moscow

T. A. Peganova

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: nataliabelk@ineos.ac.ru
Russian Federation, Moscow

A. M. Kal´sin

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: nataliabelk@ineos.ac.ru
Russian Federation, Moscow

N. V. Belkova

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Author for correspondence.
Email: nataliabelk@ineos.ac.ru
Russian Federation, Moscow

References

  1. Colebatch A.L., Weller A.S. // Chem. Eur. J. 2019. V. 25. P. 1379. https://doi.org/10.1002/chem.201804592
  2. Staubitz A., Robertson A.P.M., Manners I. // Chem. Rev. 2010. V. 110. p. 4079. https://doi.org/10.1021/cr100088b
  3. Du V.A., Jurca T., Whittell G.R., Manners I. // Dalton Trans. 2016. V. 45. P. 1055. https://doi.org/10.1039/C5DT03324A
  4. Resendiz-Lara D.A., Stubbs N.E., Arz M.I. et al. // Chem. Commun. 2017. V. 53. P. 11701.
  5. Kumar A., Daw P., Milstein D. et al. // Chem. Rev. 2022. V. 122. P. 385. https://doi.org/10.1021/acs.chemrev.1c00412
  6. Alig L., Fritz M., Schneider S. et al. // Chem. Rev. 2019. V. 119. P. 2681. https://doi.org/10.1021/acs.chemrev.8b00555
  7. Glüer A., Förster M., Celinski V. R. et al. // ACS Catal. 2015. V. 5. P. 7214. https://doi.org/10.1021/acscatal.5b02406
  8. Luconi L., Osipova E. S., Giambastiani G. et al. // Organometallics. 2018. V. 37. P. 3142. https://doi.org/10.1021/acs.organomet.8b00488
  9. Todisco., S., Luconi., L., Giambastiani., G et al. // Inorg. Chem. 2017. V. 56. P. 4296. https://doi.org/10.1021/acs.inorgchem.6b02673
  10. Titova. E.M., Osipova. E.S., Pavlov. A.A. et al. // ACS Catal. 2017. V. 7. P. 2325. https://doi.org/10.1021/acscatal.6b03207
  11. Sewell L.J., Huertos M.A., Dickinson M.E. et al. // Inorg. Chem. 2013. V. 52. P. 4509. https://doi.org/10.1021/ic302804d
  12. Johnson H.C., Leitao E.M., Whittell G.R. et al. // J. Am. Chem. Soc. 2014. V. 136. P. 9078. https://doi.org/10.1021/ja503335g
  13. Douglas T.M., Chaplin A.B., Weller A S. et al. // J. Am. Chem. Soc. 2009. V. 131. P. 15440. http://dx.doi.org/10.1021/ja906070r
  14. Kirkina V.A., Osipova E.S., Filippov O.A. et al. // Mendeleev Commun. 2020. V. 30. P. 276. https://doi.org/10.1016/j.mencom.2020.05.004
  15. Brodie C.N., Sotorrios L., Boyd T.M. et al. // ACS Catal. 2022, vol. 12. P. 13050. https://doi.org/10.1021/acscatal.2c03778
  16. Brodie C.N., Boyd T.M., Sotorríos L. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 21010. https://doi.org/10.1021/jacs.1c10888
  17. White C., Yates A., Maitlis P.M. et al. // Inorg. Synth. 1992. V. 29. P. 228. https://doi.org/10.1002/9780470132609.ch53
  18. Nekrasov R.I., Peganova T.A., Fedyanin I.V. et al. // Inorg. Chem. 2022. V. 61. P. 16081. https://doi.org/10.1021/acs.inorgchem.2c02478
  19. Kruger C.R., Niederprum H. // Inorg. Synth. 1966. V. 8. P. 15.
  20. Pal S., Kusumoto S., Nozaki K. // Organometallics. 2018. V. 37. P. 906. https://doi.org/10.1021/acs.organomet.7b00889
  21. Sinopalnikova I.S., Peganova T.A., Belkova N.V. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. P. 2285. https://doi.org/10.1002/ejic.20170134423
  22. Pal S., Iwasaki T., Nozaki K. // Dalton Trans. 2021, V. 50. P. 7938. https://doi.org/10.1039/D1DT01705E
  23. Dallanegra R., Robertson A.P.M., Chaplin A. B. et al. // Chem. Commun. 2011. V. 47. P. 3763. https://doi.org/10.1039/C0CC05460G
  24. Gulyaeva E.S., Osipova E.S., Kovalenko S.A. et al. // Chem. Sci. 2024. V. 15. P. 1409. https://doi.org/10.1039/D3SC05356C

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. Synthesis of complexes IIa, IIb and IIIa, IIIb.

Download (98KB)
3. Scheme 2. The proposed isomerization of IIIa in IVa under the action of DMAB, accompanied by the transfer of a hydrogen atom from Cp*H to the Rh atom and the release of H2.

Download (124KB)
4. Fig. 1. Dehydrogenation of DMAB catalyzed by complexes IIIa, IIIb in toluene and THF. Conditions: T = 40°C, [Rh] = 5.8 mM, [DMAB] = 0.145 M, Vp-ra = 2.1 ml.

Download (85KB)
5. Fig. 2. Dehydrogenation of DMAB catalyzed by complexes Ia, Ib and IIa, IIb in toluene, in comparison with IIIa, IIIb. Conditions: T = 40°C, [Rh] = 2.9 mM, [DMAB] = 0.145 M, Vp-ra = 2.1 ml.

Download (105KB)
6. Fig. 3. Dehydrogenation of DMAB (0.145 M) catalyzed by complex IIIb at 40 °C in toluene, depending on the concentration of the catalyst: first-order kinetic curves (left) and the dependence of knabl on [Rh].

Download (158KB)
7. Fig. 4. Kinetics of dehydrogenation of DMAB (0.085 M, δB = 13 m.d.) catalyzed by complex IIIa (0.008 M) at 18 ° C in toluene-d8. Changes in the NMR spectrum of the 11V mixture.

Download (262KB)
8. Fig. 5. Graphs of changes in the relative concentrations of boron-containing reaction products (left) and a first-order kinetic curve with calculation of the observed reaction rate constant (right). The conditions are as shown in Fig. 4.

Download (118KB)

Copyright (c) 2024 Российская академия наук

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».