Lanthanide Complexes with 1,4,7-Trimethyl-1,4,7-triazacyclononane

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The reaction of 1,4,7-trimethyl-1,4,7-triazacyclononane with samarium, gadolinium, and terbium chloride tetrahydrofuranates gives mononuclear complexes [LnCl3(Me3tacn)(THF)n] (Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane; Ln = Sm (I), Gd (II), n = 1; Ln = Tb (III), n = 0). The treatment of complexes I or II with 1,2,4-triphenylcyclopentadienyl potassium affords mono(cyclopentadienyl) complexes [CpPh3LnCl2(Me3tacn)] (CpPh3 = = 1,2,4-triphenylcyclopentadienyl; Ln = Sm (IV), Gd (V)). Complexes IV and V are formed even when a twofold excess of CpPh3K is used. The molecular structure of complexes IV was established by X-ray diffraction analysis (CCDC nos. 2299485 (I), 2299487 (II), 2299486 (III), 2305352 (IV), 2306051 (V)).

全文:

受限制的访问

作者简介

S. Degtyareva

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; Higher School of Economics

Email: kostya@xray.ineos.ac.ru
俄罗斯联邦, Moscow; Moscow

D. Bardonov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; Higher School of Economics

Email: kostya@xray.ineos.ac.ru
俄罗斯联邦, Moscow; Moscow

K. Lysenko

Higher School of Economics; Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: kostya@xray.ineos.ac.ru
俄罗斯联邦, Moscow; Moscow

M. Minyaev

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: kostya@xray.ineos.ac.ru
俄罗斯联邦, Moscow; Moscow

I. Nifantyev

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; Higher School of Economics; Lomonosov Moscow State University

Email: kostya@xray.ineos.ac.ru
俄罗斯联邦, Moscow; Moscow; Moscow

D. Roitershtein

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; Higher School of Economics; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: roiter@yandex.ru
俄罗斯联邦, Moscow; Moscow; Moscow

参考

  1. Ortu, F., Chem. Rev., 2022, vol. 122, no. 6, p. 6040.
  2. Baisch, U., DellʹAmico, D.B., Calderazzo, F., et al., Inorg. Chim. Acta, 2004, vol. 357, no. 5, p. 1538.
  3. Rogers, R.D., Voss, E.J., and Etzenhouser, R.D., Inorg. Chem., 1988, vol. 27, no. 3, p. 333.
  4. Gompa, T.P., Rice, N.T., Russo, D.R., et al., Dalton Trans., 2019, vol. 48, no. 23, p. 8030.
  5. Petricek, S., Demsar, A., and Golic, L., Polyhedron, 1998, vol. 18, nos. 3–4, p. 529.
  6. Li, J.-S., Neumuller, B., and Dehnicke, K., Z. Anorg. Allg. Chem., 2002, vol. 628, no. 1, p. 45.
  7. Bardonov, D.A., Komarov, P.D., Ovchinnikova, V.I., et al., Organometallics, 2021, vol. 40, no. 9, p. 1235.
  8. Sadrtdinova, G.I., Bardonov, D.A., Lyssenko, K.A., et al., Mendeleev Commun., 2023, vol. 33, no. 3, p. 357.
  9. Mortis, A., Maichle-Mossmer, C., and Anwander, R., Organometallics, 2023, vol. 42, no. 11, p. 1158.
  10. Bigmore, H.R., Lawrence, S.C., Mountford, P., et al., Dalton Trans., 2005, vol. 34, no. 4, p. 635.
  11. Lawrence, S.C., Ward, B.D., Dubberley, S.R., et al., Chem. Commun., 2003, vol. 39, no. 23, p. 2880.
  12. Barisic, D., Diether, D., Maichle-Mossmer, C., et al., J. Am. Chem. Soc., 2019, vol. 141, no. 35, p. 13931.
  13. Bambirra, S., Meetsma, A., and Hessen, B., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2007, vol. 63, no. 12, p. m2891.
  14. Wedal, J.C., Ziller, J.W., and Evans, W.J., Dalton Trans., 2023, vol. 52, no. 15, p. 4787.
  15. Wedal, J.C., Murillo, J., Ziller, J.W., et al., Inorg. Chem., 2023, vol. 62, no. 15, p. 5897.
  16. Hajela, S., Schaefer, W.P., and Bercaw, J.E., J. Organomet. Chem., 1997, vol. 532, nos 1-2, p. 45.
  17. Curnock, E., Levason, W., Light, M.E., et al., Dalton Trans., 2018, vol. 47, no. 17, p. 6059.
  18. Edelmann, F.T. and Poremba, P., Synthetic Methods of Organometallic and Inorganic Chemistry (Herrman/Brauer), Edelmann, F.T. and Herrmann, W.A., Eds., Stuttgart, 1997, p. 34.
  19. Hirsch, S.S. and Bailey, W.J., Org. Chem., 1978, vol. 43, no. 21, p. 4090.
  20. Madison, S.A. and Batal, D.J., US Patent 5284944A, 1994.
  21. APEX-III, Madison: Bruker AXS Inc., 2019.
  22. Krause, L., Herbst-Irmer, G.M., Sheldrick, D., et al., J. Appl. Crystallogr., 2015, vol. 48, p. 3.
  23. CrysAlisPro. Rigaku Oxford Diffraction, Version 1.171.42, 2023.
  24. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, p. 3.
  25. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.
  26. Cirera, J., Ruiz, E., and Alvarez, S., Organometallics, 2005, vol. 24, no. 7, p. 1556.
  27. Stellfeldt, D., Meyer, G., and Deacon, G.B., Z. Anorg. Allg. Chem., 1999, vol. 625, no. 8, p. 1252.
  28. Evans, W.J., Gummerschmeir, T.S., and Ziller, J.W., Appl. Organomet. Chem., 1995, vol. 9, nos 5-6, p. 437.
  29. Bienfait, A.M., Wolf, B.M., Tornroos, K.W., et al., Organometallics, 2016, vol. 35, no. 21, p. 3743.
  30. Roitershtein, D.M., Puntus, L.N., Vinogradov, A.A., et al., Inorg. Chem., 2018, vol. 57, no. 16, p. 10199.
  31. Degtyareva, S.S., Bardonov, D.A., Lysenko, K.A., et al., Russ. J. Coord. Chem., 2023, vol. 49, no. 8, p. 513. https://doi.org/10.1134/S107032842370063X

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1. Synthesis of complexes I and II

下载 (65KB)
3. Fig. 1. Molecular structure of complex I in the representation of atoms by ellipsoidal thermal vibrations (ρ = 50%). Hydrogen atoms and disorder of the coordinated THF molecule are not shown to simplify the figure

下载 (131KB)
4. Fig. 2. 1H NMR spectrum of complex I. The insert shows an enlarged fragment of the spectrum with the signal at 4.46 m.d.

下载 (174KB)
5. Scheme 2. Synthesis of complex III

下载 (59KB)
6. Fig. 3. Molecular structure of complex III in the representation of atoms by thermal vibration ellipsoids (ρ = 50%). Hydrogen atoms and disorder of the {TbCl3} fragment are not shown

下载 (191KB)
7. Scheme 3. Synthesis of complexes IV and V

下载 (86KB)
8. Fig. 4. Molecular structure of complex IV in the representation of atoms by thermal vibration ellipsoids (ρ = 50%). Hydrogen atoms, THF molecule and disorder of one of the phenyl substituents are not shown

下载 (174KB)

版权所有 © Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».