New cobalt complex with dihydroxycoumarin: synthesis and kinetics of its redox-activated dissociation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new redox-active cobalt(III) complex containing the 2-oxo-2Н-chromene-6,7-diolate dianion and 4,4ʹ-dimethoxy-2,2ʹ-bipyridine as ligands is synthesized. The reduction of the sythesized complex with ascorbic acid in an inert atmosphere is studied in situ by NMR spectrocopy. The reduction is shown to result in the release of 6,7-dihydrocycoumarin acting as a model drug. This process has the first order with respect to the initial complex.

Full Text

Restricted Access

About the authors

К. А. Spiridonov

Moscow State University; Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: khakina90@ineos.ac.ru
Russian Federation, Moscow; Moscow

I. A. Nikovskii

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: khakina90@ineos.ac.ru
Russian Federation, Moscow

Е. P. Antoshkina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: khakina90@ineos.ac.ru
Russian Federation, Moscow; Moscow oblast, Dolgoprudnyi

E. А. Khakina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Author for correspondence.
Email: khakina90@ineos.ac.ru
Russian Federation, Moscow

Yu. V. Nelyubina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: khakina90@ineos.ac.ru
Russian Federation, Moscow

References

  1. Brown J.M., Giaccia A.J. // Cancer Res. 1998. V. 58. P. 1408.
  2. Xiong Q., Liu B., Ding M. et al. // Cancer Lett. 2020. V. 486. P. 1.
  3. Vaupel P., Thews O., Hoeckel M. // Med. Oncology. 2001. V. 18. P. 243.
  4. Ruirui L., Feifei P., Jia C. et al. // Asian J. Pharmaceutic. Sci. 2020. V. 15. P. 311.
  5. Renfrew A.K. // Metallomics. 2014. V. 6. P. 1324.
  6. Hall M.D., Failes T.W., Yamamoto N. et al. // Dalton Trans. 2007. P. 3983.
  7. Palmeira-Mello M.V., Caballero A.B., Ribeiro J.M. et al. // J. Inorg. Biochem. 2020. V. 211. P. 111211.
  8. Tsitovich P.B., Spernyak J.A., Morrow J.R. // Angew. Chem. Int. Ed. 2013. V. 52. P. 13997.
  9. Renfrew A.K., O′Neill E.S., Hambley T.W. et al. // Coord. Chem. Rev. 2018. V. 375. P. 221.
  10. McPherson J.N., Hogue R.W., Akogun F.S. et al. // Inorg. Chem. 2019. V. 58. P. 2218.
  11. Khakina E.A., Nikovskii I.A., Babakina D.A. et al. // Russ. J. Coord. Chem. 2023. V. 49. P. 24. https://doi.org/10.1134/S1070328422700105
  12. Vlcek A.A. // Inorg. Chem. 1967. V. 6. P. 1425.
  13. Ma D.-L., Wu C., Cheng S.-S. et al. // Int. J. Mol. Sci. 2019. V. 20. P. 341.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1.

Download (85KB)
3. Scheme 2.

Download (158KB)
4. Fig. 1. Electrospray ionization mass spectrum of complex I recorded for positive ions.

Download (89KB)
5. Fig. 2. NMR spectrum of 1H of complex I in DMSO-d6 solution at room temperature.

Download (134KB)
6. Fig. 3. NMR spectrum 13C of complex I in DMSO-d6 solution at room temperature.

Download (119KB)
7. Fig. 4. Dynamics of changes in the NMR spectrum 1H over time during the reduction of complex I with ascorbic acid in an argon atmosphere (the spectrum was recorded in a mixture of acetonitrile-d3 and deuterated water, 3.7 : 1 vol.).

Download (112KB)
8. Fig. 5. Mass spectrum of the products of reduction of complex I with ascorbic acid, recorded for positive ions.

Download (119KB)
9. Fig. 6. Kinetic curve of consumption of complex I during reduction with ascorbic acid in an argon atmosphere (a) and dependence of the logarithm of the concentration lnc of complex I on the reaction time (b).

Download (85KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies