Heterophase Synthesis of Silver Trifluoroacetate with Copper, Indium, and Zinc. Standard Enthalpy of Formation of Copper Trifluoroacetate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Solid-phase reactions of silver trifluoroacetate CF3COOAg with copper, indium, and zinc are studied by thermogravimetry, differential scanning calorimetry, and mass spectrometry. In a temperature range of 358–428 K, the reactions are found to afford trifluoroacetates of these metals without mass loss of the weighed samples. The obtained experimental data make it possible to calculate the enthalpy of formation of copper trifluoroacetate H298 (CF3СООСu, cr) = –1020.5 ± 18.0 kJ/mol.

About the authors

I. P. Malkerova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: sidorov@igic.ras.ru
Россия, Москва

D. B. Kayumova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: sidorov@igic.ras.ru
Россия, Москва

E. V. Belova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: sidorov@igic.ras.ru
Россия, Москва

M. A. Shmelev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: shmelevma@yandex.ru
Россия, Москва

A. A. Sidorov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: sidorov@igic.ras.ru
Россия, Москва

I. L. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: sidorov@igic.ras.ru
Россия, Москва

A. S. Alikhanyan

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: alikhan@igic.ras.ru
Россия, 119991, Москва, Ленинский пр-т, 31

References

  1. Сыркин В.Г. CVD-метод. Химическая парофазная металлизация. М.: Наука, 2000. 496 с.
  2. Fromm K.M., Gueneau E.D. // Polyhedron. 2004. V. 23. P. 1479.
  3. Paramonov S., Samoilenkov S., Papucha S. et al. // J. Phys. IV. 2001. V. 11. P. Pr3-645-52.
  4. Morozova E.A., Dobrokhotova Zh.V., Alikhanyan A.S. // J. Therm. Anal. Calorim. 201. V. 130. № 3. P. 2211.
  5. Lukyanova V.A., Papina T.S., Didenko K.V. et al. // J. Therm. Anal. Calorim. 2008. V. 92. P. 743.
  6. Kamkin N.N., Kayumova D.B., Yaryshev N.G. et al. // Russ. J. Inorg. Chem. 2012. V. 57. P. 1308.
  7. Luo Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds. CRC Press LLC, 2003.
  8. Термические константы веществ. Справочник / Под ред. Глушко В.П. М.: ВИНИТИ. Т. 4. Ч. 1.; Т. 6. Ч. 1. 1965–1981.
  9. Гурвич Л.В., Карачевцев Г.В., Кондратьев В.Н. и др. Энергии разрыва химических связей. Потенциалы ионизации и сродство к электрону. М.: Наука, 1974. 351 с.
  10. Карапетьянц М.Х., Карапетьянц М.Л. Справочник. Основные термодинамические константы неорганических и органических веществ. М.: Химия, 1968. 470 с.
  11. NIST Chemistry WebBook / Eds. Linstrom P.J., Mallard W.G. NIST Standard Reference Database Number 69. Gaithersburg (MD, USA): National Institute of Standards and Technology, 2023. https://doi.org/10.18434/T4D303
  12. Киреев В.А. Методы практических расчетов в термодинамике химических реакций. М.: Химия, 1970. 520 с.
  13. Christe K.O., Naumann D. // Spectrochim. Acta. A. 1973. V. 29. № 12. P. 2017. https://doi.org/10.1016/0584-8539(73)80060-1
  14. Szczęsny R., Szłyk E. // J. Therm. Anal. Calorim. 2013. V. 111. № 2. P. 1325.
  15. Li H., Zhao B., Ding R. et al. // Crystal Growth Design. 2012. V. 12. № 8. P. 4170.
  16. Chirakkara S., Nanda K.K., Krupanidhi S.B. // Thin Solid Films. 2011. V. 519. P. 3647.
  17. Bernik S., Kosir M., Guilmeau E. // Zastita Materijala. 2016. V. 57. N. 2. P. 318.
  18. Gholami M., Khodadadi A.A., Anaraki Firooz A. et al. // Sensors Actuators. B. 2015. V. 212. P. 395.
  19. Ahmad M., Zhao J., Iqbal J. et al. // J. Phys. D. 2009. V. 42. P. 165406.
  20. Mishra S., Daniele S. // Chem. Rev. 2015. V. 115. № 16. P. 8379.
  21. Hichou A.E., Bougrine A., Bubendorff J.L. et al. // Semicond. Sci.Technol. 2002. V. 17. № 6. P. 607.
  22. Gunasekaran E., Ezhilan M., Mani et al. // Semicond. Sci. Technol. 2018. V. 33. № 9. Art. 095005.
  23. Antony A., Pramodini S., Kityk I.V. et al. // Physica. E. 2017. V. 94. P. 190.
  24. Kadi M.W., McKinney D., Mohamed R.M. et al. // Ceramics Intern. 2016. V. 42. № 4. P. 4672.
  25. Choi Y.-J., Park H.-H. // J. Mater. Chem. C. 2014. V. 2. № 1. P. 98.
  26. Cosham S.D., Kociok-Köhn G., Johnson A.L. et al. // Eur. J. Inorg. Chem. 2015. V. 2015. № 26. P. 4362.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (124KB)
3.

Download (41KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies