Nitro-Substituted Pyridinimine Complexes of Pd(II): Synthesis and Inhibition of MAO-B ex vivo

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The first ever synthesis of complexes [PdLCl2] (I) and [PdLBr2] (II) was successfully achieved,
where L = 2,6-dimethyl-4-nitro-N-(pyridin-2-ylmethylildene)aniline, a ligand with a purported ability to
inhibit monoamine oxidase B (MAO-B). To gain insight into the molecular structure of complexes I
and II, as well as the ligand precursor 2,6-dimethyl-4-nitroaniline L4 (CIF files CCDC nos. 2255106 (I),
2255105 (II), 2255103 (L), 2255104 (L4)), X-ray diffraction analysis was utilized. Complex I underwent further
characterization to determine its stability, solubility, and lipophilicity. Cytotoxicity studies of substances
L, I, and II on human embryonic kidney cell line HEK-293 showed no evidence of cytotoxic activity. To evaluate
the inhibitory activity of new substances L, I, and II as well as established substances III−IX, selegiline,
and rasagiline, ex vivo studies were conducted, establishing a structure/activity relationship.

About the authors

M. S. Denisov

Institute of Technical Chemistry of Ural Branch of the RAS, Perm, Russia

Email: m189@mail.ru
Россия, Пермь

Yu. A. Beloglazova

Institute of Technical Chemistry of Ural Branch of the RAS, Perm, Russia

Author for correspondence.
Email: m189@mail.ru
Россия, Пермь

References

  1. Ndagi U., Mhlongo N., Soliman M.E. // Drug Des. Dev. Ther. 2017. V. 11. P. 599. https://doi.org/10.2147/DDDT.S119488
  2. Kotieva I.M., Dodokhova M.A., Safronenko A.V. et al. // J. Clin. Oncol. 2022. V. 40. № 16. Art. e15080. https://doi.org/10.1200/JCO.2022.40.16_suppl.e15080
  3. Yambulatov D.S., Lutsenko I.A., Nikolaevskii S.A. et al. // Molecules. 2022. V. 27. № 23. P. 8565. https://doi.org/10.3390/molecules27238565
  4. Czarnomysy R., Radomska D., Szewczyk O.K. et al. // Int. J. Mol. Sci. 2021. V. 22. № 15. P. 8271. https://doi.org/10.3390/ijms22158271
  5. Abu-Surrah A.S., Kettunen M. // Curr. Med. Chem. 2006. V. 13. № 11. P. 1337.
  6. Sharma N.K., Ameta R.K., Singh M. // Biochem. Res. Int. 2016. V. 2016. Art. 4359375. https://doi.org/10.1155/2016/4359375
  7. Scattolin Th., Voshkin V.A., Visentin F., Nolan S.P. // Cell Rep. Phys. Sci. 2021. V. 2. Art. 100446. https://doi.org/10.1016/j.xcrp.2021.100446
  8. Боярский В.П., Михердов А.С., Байков С.В. и др. // Хим.-фарм. журн. 2021. Т. 55. № 2. С. 20 (Boyarskii V.P., Mikherdov A.S., Baikov S.V. et al. // Pharm. Chem. J. 2021. V. 55. № 2. P. 130). https://doi.org/10.1007/s11094-021-02393-1
  9. Батыренко А.А., Миколайчук О.В., Овсепян Г.К. и др. // Журн. общ. химии. 2021. Т. 91. № 4. С. 590 (Batyrenko A.A., Mikolaichuk O.V., Ovsepyan G.K. et al. // Russ. J. Gen. Chem. 2021. V. 91. № 4. P. 666). https://doi.org/10.1134/S1070363221040149
  10. Zalevskaya O.A., Gur’eva Y.A., Kutchin A.V. // Inorg. Chim. Acta. 2021. V. 527. P. 120593. https://doi.org/10.1016/j.ica.2021.120593
  11. Ибатуллина М.Р., Жильцова Е.П., Кулик Н.В. и др.// Изв. АН. Сер. хим. 2022. № 2. С. 314 (Ibatullina M.R., Zhil’tsova E.P., Kulik N.V. et al. // Russ. Chem. Bull. 2022. V. 71. № 2. P. 314). https://doi.org/10.1007/s11172-022-3413-6
  12. Денисов М.С., Глушков В.А. // Вест. Перм. ун-та. Сер. Химия. 2018. Т. 8. № 4. С. 388 (Denisov M.S., Glushkov V.A. // Bulletin of Perm University. Chemistry. 2018. V. 8. № 4. P. 388). https://doi.org/10.17072/2223-1838-2018-4-388-411
  13. Egorova K.S., Galushko A.S., Ananikov V.P. // Angew. Chem. Int. Ed. 2020. V. 59. P. 22296. https://doi.org/10.1002/anie.20200308
  14. Денисов М.С. // Вест. ПФИЦ. 2021. №. 4. С. 6 (Denisov M.S. // Perm. Federal Res. Center J. 2021. № 4. P. 6). https://doi.org/10.7242/2658-705X/2021.4.1
  15. Patra M., Gasse G. // ChemBioChem. 2012. V. 13. № 9. P. 1232. https://doi.org/10.1002/cbic.201200159
  16. Özbek N., Alyar S., Memmi B.K. et al. // J. Mol. Struct. 2017. V. 1127. P. 437. https://doi.org/10.1016/j.molstruc.2016.07.122
  17. Ahmed M., Khan Sh.Z., Sher N. et al. // J. Venomous Anim. Toxins Incl. Trop. Dis. 2021. V. 27. Art. e20200047. https://doi.org/10.1590/1678-9199-JVATITD-2020-0047
  18. Bal S., Demirci Ö., Şen B. et al. // Polyhedron. 2021. V. 198. P. 115060. https://doi.org/10.1016/j.poly.2021.115060
  19. Şahin Ö., Özdemir Ü.Ö., Seferoğlu N. et al. // J. Biomol. Struct. Dyn. 2021. P. 4460. https://doi.org/10.1080/07391102.2020.1858163
  20. García-García A., Rojas S., Rivas-García L. et al. // Chem. Commun. 2022. V. 58. P. 1514. https://doi.org/10.1039/D1CC04404D
  21. Karataş M.O., Çalgın G., Alıcı B. et al. // Appl. Organomet. Chem. 2019. V. 33. № 10. Art. e5130. https://doi.org/10.1002/aoc.5130
  22. Asma M., Badshah A., Ali S. et al. // Transition Met. Chem. 2006. V. 31. P. 556. https://doi.org/10.1007/s11243-006-0027-z
  23. Lassig J.P., Shultz M.D., Gooch M.G. et al. // Arch. Biochem. Biophys. 1995. V. 322. № 1. P. 119. https://doi.org/10.1006/abbi.1995.1443
  24. Vieites M., Smircich P., Parajón-Costa B. et al. // J. Biol. Inorg. Chem. 2008. V. 13. № 5. P. 723. № 10. P. 1839. https://doi.org/10.1016/j.jinorgbio.2008.05.010
  25. Fricker S.P., Mosi R.M., Cameron B.R. et al. // J. Inorg. Biochem. 2008. V. 102. Iss. 10. P. 1839. https://doi.org/10.1016/j.jinorgbio.2008.05.010
  26. Carneiro Z.A., Lima J.C., Lopes C.D. et al. // Eur. J. Med. Chem. 2019. V. 180. № 15. P. 213. https://doi.org/10.1016/j.ejmech.2019.07.014
  27. Gama N.H., Elkhadir A.Y.F., Gordhan B.G. et al. // Biometals. 2016. V. 29. P. 637. https://doi.org/10.1007/s10534-016-9940-6
  28. Chen Ch., Sun L.‑Yu., Gao H. et al. // ACS Infect. Dis. 2020. V. 6. № 5. P. 975. https://doi.org/10.1021/acsinfecdis.9b00385
  29. Mital R., Shah G.M., Srivastava T.S., Bhattacharya R.K. // Life Sci. 1992. V. 50. № 11. P. 781. https://doi.org/10.1016/0024-3205(92)90183-P
  30. Petrović Z.D., Hadjipavlou-Litina D., Pontiki E. et al. // Bioorg. Chem. 2009. V. 37. № 5. P. 162. https://doi.org/10.1016/j.bioorg.2009.07.003
  31. Hegazy W.H., Al-Faiyz Ya.S. // Med. Chem. Res. 2014. V. 23. № 1. P. 518. https://doi.org/10.1007/s00044-013-0661-x
  32. Lima M.A., Costa V.A., Franco M.A. et al. // Inorg. Chem. Commun. 2020. V. 112. P. 107708. https://doi.org/10.1016/j.inoche.2019.107708
  33. Krinulović K., Bugarčić Ž., Vrvić M. et al. // Toxicol. In Vitro. 2006. V. 20. № 8. P. 1292. https://doi.org/10.1016/j.tiv.2006.03.002
  34. Tatyanenko L.V., Kotelnikova R.A., Zakharova I.A., Moshkovskii Yu.Sh. // Inorg. Chim. Acta. 1981. V. 56. P. 89.
  35. Parrilha G.L., Ferraz K.S.O., Lessa J.A. et al. // Eur. J. Med. Chem. 2014. V. 84. № 12. P. 537. https://doi.org/10.1016/j.ejmech.2014.07.055
  36. Türkan F., Huyut Z., Atalar M.N. // J. Biochem. Mol. Toxicol. 2018. V. 32. № 10. Art. e22205. https://doi.org/10.1002/jbt.22205
  37. Edmondson D.E., Binda C., Mattevi A. // Arch. Biochem. Biophys. 2007. V. 464. P. 269. https://doi.org/10.1016/j.abb.2007.05.006
  38. Pharmaceutical Chemistry / Ed. Watson D.R. Glasgow (UK): Elsevier Ltd., 2011. 641 p.
  39. Hong R., Li X. // MedChemComm. 2019. V. 10. P. 10. https://doi.org/10.1039/c8md00446c
  40. Татьяненко Л.В., Соколова Н.В., Мошковский Ю.Ш. // Вопросы медициноской химии. 1982. Т. 28. С. 126 (Tat’yanenko L.V., Sokolova N.V., Moshkovsky Y.S. // Vopr. Med. Khim. 1982. V. 28. P. 126).
  41. Albert J., Cadena J.M., González A. et al. // Chem. Commun. 2003. V. 41. № 4. P. 528. https://doi.org/10.1039/B211808D
  42. Cho H.-U., Kim S., Sim J. et al. // Exp. Mol. Med. 2021. V. 53. P. 1148. https://doi.org/10.1038/s12276-021-00646-3
  43. Денисов М.С., Гагарских О.Н., Утушкина Т.А. // Вест. Перм. ун-та. Сер. Химия. 2021. Т. 11. № 1. С. 30 (Denisov M.S., Gagarskikh O.N., Utushkina T.A. // Bulletin of Perm University. Chemistry. 2021. V. 11. № 1. P. 30). https://doi.org/10.17072/2223-1838-2021-1-30-58
  44. Денисов М.С., Дмитриев М.В., Ерошенко Д.В. и др. // Журн. неорган. химии. 2019. Т. 64. № 1. С. 38 (Denisov M.S., Dmitriev M.V., Eroshenko D.V. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 1. P. 56). https://doi.org/10.1134/S0036023619010054
  45. Yang D.-d., Wang R., Zhu J.-l. et al. // J. Mol. Struct. 2017. V. 1128. № 15. P. 493. https://doi.org/10.1016/j.molstruc.2016.08.037
  46. Hao Ch., Huang W., Li X. et al. // Eur. J. Med. Chem. 2017. V. 131. P. 1. https://doi.org/10.1016/j.ejmech.2017.02.063
  47. CrysAlisPro. Agilent Technologies. Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET).
  48. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112. https://doi.org/10.1107/S0108767307043930
  49. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  50. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. A-ppl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  51. Gonçalves B.M.F., Salvador J.A.R., Marín S., Cascante M. // Eur. J. Med. Chem. 2016. V. 114. P. 101. https://doi.org/10.1016/j.ejmech.2016.02.057
  52. Thull U., Testa B. // Biochem. Pharmacol. 1994. V. 47. № 22. P. 2307. https://doi.org/10.1016/0006-2952(94)90271-2
  53. Andrade J.M.M., Passos C.d.S., Dresch R.R. et al. // Pharmacogn. Mag. 2014. V. 10. № 37. P. 100. https://doi.org/10.4103/0973-1296.127354
  54. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. // J. Biol. Chem. 1951. V. 193. № 1. P. 265.
  55. O’Donnell A.D., Gavriel A.G., Christie W. et al. // Arkivoc. 2021. Pt. VI. P. 222. https://doi.org/10.24820/ark.5550190.p011.581
  56. Park S., Lee J., Jeong J.H. et al. // Polyhedron. 2018. V. 151. № 1. P. 82. https://doi.org/10.1016/j.poly.2018.05.031
  57. Motswainyana W.M., Onani M.O., Jacobs J., Meervelt L.V. // Acta Crystallogr. C. 2012. V. 68. P. 356. https://doi.org/10.1107/S0108270112045970
  58. Laine T.V., Klinga M., Leskelä M. // Eur. J. Inorg. Chem. 1999. V. 1999. № 6. P. 959. https://doi.org/10.1002/(SICI)1099-0682(199906)1999: 6<959::AID-EJIC959>3.0.CO;2-Z
  59. Delogu G.L., Pintus F., Mayán L. et al. // MedChemComm. 2017. V. 8. P. 1788. https://doi.org/10.1039/C7MD00311K
  60. Finberg J.P.M., Rabey J.M. // Front. Pharmacol. 2016. V. 18. № 7. P. 340. https://doi.org/10.3389/fphar.2016.00340
  61. Денисов М.С., Гагарских О.Н. // Журн. общ. химии. 2021. Т. 91. № 7. С. 1092 (Denisov M.S., Gagarskikh O.N. // Russ. J. Gen. Chem. 2021. V. 91. № 7. P. 1354). https://doi.org/10.1134/S1070363221070136

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (78KB)
3.

Download (307KB)
4.

Download (51KB)
5.

Download (290KB)
6.

Download (27KB)
7.

Download (52KB)
8.

Download (336KB)
9.

Download (383KB)
10.

Download (84KB)

Copyright (c) 2023 М.С. Денисов, Ю.А. Белоглазова

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».