Furancarboxylate Coordination Polymers of Gd3+ and Eu3+: Synthesis, Structural Variations, and Biological Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A series of polymer complexes of Gd(III) and Eu(III) with 3-furancarboxylic (HFur) and 5-nitro-
2-furancarboxylic (HNfur) acids differed in the composition and coligands presented by solvent molecules
(CH3OH/C2H5OH/H2O) is synthesized: [Gd(Fur)3(CH3OH)(C2H5OH)]n (I), [Gd(Nfur)3(CH3OH)2]n·
CH3CN (II), [Eu(Fur)3(C2H5OH)]n (III), and [Eu(Nfur)3(H2O)2]n·3CH3CN (IV). According to the X-ray
diffraction (XRD) data, all complexes are 1D coordination polymers in which the lanthanide cation has the
coordination number 8 (LnO8) to form the environment as a doubly augmented triangular prism (I, II) or a
square antiprism (III, IV). The supramolecular levels of the polymers are stabilized due to intra- and intermolecular
hydrogen bonds between the coordinated solvent molecules and O atoms of the chelate-bound
anions of the acid and via two types of noncovalent C–H…O and N–O…π interactions that significantly contribute
to an additional stabilization of the crystal packings. The biological properties of complexes I, II, and
IV are studied with respect to the model nonpathogenic strain Mycolicibacterium smegmatis.

About the authors

M. A. Uvarova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: yak_marin@mail.ru
Россия, Москва

I. A. Lutsenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: yak_marin@mail.ru
Россия, Москва

M. A. Shmelev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: shmelevma@yandex.ru
Россия, Москва

O. B. Bekker

Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia

Email: yak_marin@mail.ru
Россия, Москва

M. A. Kiskin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: yak_marin@mail.ru
Россия, Москва

I. L. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: yak_marin@mail.ru
Россия, Москва

References

  1. Sessoli R., Powell A.K. // Coord. Chem. Rev. 2009. V. 253. P. 2328.
  2. Layfield R.A., Murugesu M. Lanthanides and Actinides in Molecular Magnetism. Wiley-VCH, 2015.
  3. Molecular Magnetic Materials / Eds. Sieklucka B., Pinkowicz D. Weinheim (Germany): Wiley-VCH Verlag GmbH, 2017.
  4. Kiskin M.A., Varaksina E.A., Taydakov I.V., Eremenko I.L. // Inorg. Chim. Acta. 2018. V. 482. P. 85.
  5. Шмелев М.А., Воронина Ю.К., Гоголева Н.В. и др. // Изв. АН. Сер. хим. 2020. № 8. С. 1544 (Shmelev M.A., Voronina Y.K., Gogoleva N.V. et al. //Russ. Chem. Bull. 2020. V. 69. P. 1544). https://doi.org/10.1007/s11172-020-2934-0
  6. Binnemans K. // Chem. Rev. 2009. V. 109. P. 4283.
  7. Zhen-Feng Chen, Ming-Xiong Tan, Yan-Cheng Liu et al. // J. Inorg. Biochem. 2011. V. 105. P. 426.
  8. Kaczmarek M.T., Zabiszak M., Nowak M., Jastrzab R. // Coord. Chem. Rev. 2018. V. 370. P. 42.
  9. Guan Q.-L., Xing Y.-H., Liu J. et al. // J. Inorg. Biochem. 2013. V. 128. P. 57.
  10. Rashid H.U., Martines M.A.U., Jorge J. et al. // Bioorgan. Med. Chem. 2016. V. 4. P. 5663.
  11. Bombieri G., Artali R., Mason S.A. et al. // Inorg. Chim. Acta. 2018. V. 470. P. 433.
  12. Babic A., Vorobiev V., Xayaphoummine C. et al. // Chem. Eur. J. 2018. V. 24. P. 1348.
  13. Phukan B., Mukherjee C., Varshney R. // Dalton Trans. 2018. V. 47. P. 135.
  14. Zhang T., Zhu X., Wong W.-K. et al. // Chem. Eur. J. 2013. V. 19. P. 739.
  15. Луценко И.А., Баравиков Д.Е., Кискин М.А. и др. // Коорд. химия. 2020. Т. 46. № 6. С. 366 (Lutsenko I.A., Baravikov D.E., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 411). https://doi.org/10.1134/S1070328420060056
  16. Луценко И.А., Ямбулатов Д.С., Кискин М.А. и др. // Коорд. химия. 2020. Т. 46. № 12. С. 715 (Lutsenko I.A., Yambulatov D.S., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 787). https://doi.org/10.1134/S1070328420120040
  17. Lutsenko I.A., Yambulatov D.S., Kiskin M.A. et al. // Chem. Select. 2020. V. 5. P. 11837.
  18. Луценко И.А., Кискин М.А., Кошенскова К.А. и др. // Изв. АН. Сер. хим. 2021. № 3. С. 463 (Lutsenko I.A., Kiskin M.A., Koshenskova K.A. et al. // Russ. Chem. Bull. 2021. V. 70. P. 463). https://doi.org/10.1007/s11172-021-3109-3
  19. Uvarova M.A., Lutsenko I.A., Kiskin M.A. et al. // Polyhedron. 2021. V. 203. P. 115241.
  20. Lutsenko I.A., Baravikov D.E., Koshenskova K.A. et al. // RSC Adv. 2022. V. 12. P. 5173.
  21. Луценко И.А., Никифорова М.Е., Кошенскова К.А. и др. // Коорд. химия. 2022. Т. 48. № 2. С. 83 (Lutsenko I.A., Nikiforova M.E., Kosheskova K.A. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 881). https://doi.org/10.1134/S1070328421350013
  22. Bartolomé E., Bartolomé J., Arauz A. et al. // J. Mater. Chem. C. 2016. V. 22. P. 5038.
  23. Li X., Jin L., Lu S., Zhang J. // J. Mol. Struct. 2002. V. 604. P. 65.
  24. Bartolomé E., Bartolom, J., Arauzo A. et al. // J. Mat. Chem. 2018. V. 19. 5286.
  25. Li X., Zheng X., Jin L., Zhang J. // J. Mol. Struct. 2001. V. 559. P. 341.
  26. Bartolomé E., Bartolomé J., Melnic S. et al. // Dalton Trans. 2019. V. 42. P. 10153.
  27. Уварова М.А., Луценко И.А., Никифорова М.Е. и др. Коорд. химия. 2022. № 8. С. 451 (Uvarova M.A., Lutsenko I.A., Nikiforova M.E. et al. //Russ. J. Coord. Chem. 2022. V. 48. P. 457). https://doi.org/10.1134/S1070328422080073
  28. Li Xia, Bel’skii V.K., Dement’ev A.I., Medvedev Yu.N. // Russ. J. Inorg. Chem. 2004. V. 49. P. 386.
  29. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
  30. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  31. Dolomanov O.V., Bourhis L.J., Gildea R.J et al. // J. A-ppl. Cryst. 2009. V. 42. P. 339.
  32. Casanova D., Llunell M., Alemany P., Alvarez S. // Chem. Eur. J. 2005. V. 11. P. 1479.
  33. Lam A.W.H., Wong W.T., Gao S. et al. // Eur. J. Inorg. Chem. 2003. V. 2003. P. 149.
  34. Singh U.P., Kumar R., Upreti S. // J. Mol. Struct. 2007. V. 831. P. 97.
  35. Liu B.X., Chen G.H., Zhang L.J. // Acta Crystallogr. E. 2007. V. 63. P. 2263.
  36. Sharma S., Yawer M., Kariem M. et al. // Russ. J. Coord. Chem. 2015. V. 41. № 7. P. 469.
  37. Arıcı C., Ülkü, D., Tahir M. N. et al. // Acta Crystallogr. C. 1999. V. 55. P. 198.
  38. Kepert C.J. Wei-Min L., Junk P.C. et al. // Austr. J. Chem. 1999. V. 52. P. 459.
  39. Кошенскова К.А., Луценко И.А., Нелюбина Ю.В., Примаков П.В. // Журн. неорган. химии. 2022. Т. 67. № 10. С. 1398 (Koshenskova K.A., Lutsenko I.A., Nelyubina Y.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 2. Р. 1545). https://doi.org/10.1134/S003602362270005X

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (735KB)
3.

Download (1MB)
4.

Download (829KB)
5.

Download (630KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies