Synthesis and Structure of Tetraphenylstibonium Organosulfonates Ph4SbOSO2R, R = C10H15O, C10H4(OH-1)(NO2)2-2,4, C10H7-1, C6H4(COOH-2)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The reaction of equimolar amounts of pentaphenylantimony with camphor-10-sulfonic, 2,4-dinitro-1-naphthol-7-sulfonic (flavianic), 1-naphthalenesulfonic, and 2-sulfobenzoic acids in benzene resulted in the synthesis of tetraphenylstibonium organosulfonates Ph4SbOSO2C10H15O∙H2O (I), Ph4SbOSO2C10H4(OH-1)(NO2)2-2,4∙PhH (II), Ph4SbOSO2(C10H7-1)∙H2O (III), and Ph4SbOSO2C6H4(COOH-2) (IV). According to X-ray diffraction data (CCDC no. 2119791 (I), 2121381 (II), 2116582 (III), and 2123516 (IV), the crystal of I contains trigonal-bipyramidal sulfonate molecules (the axial Sb−C and Sb−O bond lengths are 2.130(3) and 2.565(2) Å, respectively) and hydration water molecules, which form a centrosymmetric eight-membered ring (the S=O∙∙∙H−O−H∙∙∙O=S distances are 2.06 and 2.21 Å). In the molecules of II, the metal atom geometry is a distorted trigonal bipyramid (the axial Sb−C and Sb−O bonds are 2.133(2) and 2.643(3) Å, respectively). The Sb−O distance (2.842(3) Å) is longer in III than in I or II; the hydration water molecules form centrosymmetric twelve-membered rings with the anions (the S=O∙∙∙H−O−H∙∙∙O=S distances are 2.02 and 2.05 Å). Meanwhile, the crystal of compound IV consists of tetrahedral tetraphenylstibonium cations and (2-carboxy)benzenesulfonate anions with the intramolecular O−H∙∙∙O=S hydrogen bond (1.75 Å).

Sobre autores

V. Senchurin

South Ural State University (National Research University), Chelyabinsk, Russia

Email: senvl@rambler.ru
Россия, Челябинск

V. Sharutin

South Ural State University (National Research University), Chelyabinsk, Russia

Email: senvl@rambler.ru
Россия, Челябинск

O. Sharutina

South Ural State University (National Research University), Chelyabinsk, Russia

Email: senvl@rambler.ru
Россия, Челябинск

V. Krasnoselskaya

South Ural State University (National Research University), Chelyabinsk, Russia

Autor responsável pela correspondência
Email: senvl@rambler.ru
Россия, Челябинск

Bibliografia

  1. Шарутин В.В., Поддельский А.И., Шарутина О.К. // Коорд. химия. 2020. Т. 46. № 10. С. 579 (Sharutin V.V., Poddel’sky A.I., Sharutina O.K. // Russ. J. Coord. Chem. 2020. V. 46. № 10. P. 663). https://doi.org/10.1134/S1070328420100012
  2. Mishra J., Saxena A. Singh S. // Curr. Med. Chem. 2007. V. 14. P. 1153. https://doi.org/10.2174/092986707780362862
  3. Mushtaq R., Rauf M.K., Bond M. et al. // Appl. Organomet. Chem. 2016. V. 30. P. 465. https://doi.org/10.1002/aoc.3456
  4. Saleem L., Altaf A.A., Badshah A. et al. // Inorg.Chim. Acta. 2018. V. 474. P. 148. https://doi.org/10.1016/j.ica.2018.01.036
  5. Oliveira L.G., Silva M.M., Paula F.C.S. et al. //Molecules. 2011. V. 16. P. 10314. https://doi.org/10.3390/molecules161210314
  6. Islam A., Da Silva J.G., Berbet F.M. et al. // Molecules. 2014. V. 19. P. 6009. https://doi.org/10.3390/molecules19056009
  7. Mushtaq R., Rauf M.K., Bolte M. et al. // Appl. Organomet. Chem. 2017. V. 31. e3606. https://doi.org/10.1002/aoc.3606
  8. Yu L., Ma Y.-Q., Liu R.-C. et al. // Polyhedron. 2004. V. 23. P. 823. https://doi.org/10.1016/j.poly.2003.12.002
  9. Wang F., Yin H., Yue C. et al. // J. Organomet. Chem. 2013. V. 738. P. 35. https://doi.org/10.1016/j.jorganchem.2013.03.046
  10. Islam A., Rodrigues B.L., Marzano I.M. et al. // Eur. J. Med. Chem. 2016. V. 109. P. 254. https://doi.org/10.1016/j.ejmech.2016.01.003
  11. Iftikhar T., Rauf M.K., Sarwar S. et al. // J. Organomet. Chem. 2017. V. 851. P. 89. https://doi.org/10.1016/j.jorganchem.2017.09.002
  12. Jiang J., Yin H., Wang D. et al. // Dalton Trans. 2013. V. 42. P. 8563. https://doi.org/10.1039/c3dt50221j
  13. Yu L., Ma Y.-Q., Wang G.-C., Li J.-S. // Heteroat. Chem. 2004. V. 15. P. 32. https://doi.org/10.1002/hc.10208
  14. Polychronis N.M., Banti C.N., Raptopoulou C.P. et al. // Inorg. Chim. Acta. 2019. V. 489. P. 39. https://doi.org/10.1016/j.ica.2019.02.004
  15. Шарутин В.В., Шарутина О.К., Пакусина А.П. и др. // Коорд. химия. 2004. Т. 30. № 1. С. 15 (Sharutin V.V., Sharutina O.K., Pakusina A.P. et al. // Russ. J. Coord. Chem. 2004. V. 30. № 1. P. 13). https://doi.org/10.1023/B:RUCO.0000011636.28262.d3
  16. Кочешков К.А., Сколдинов А.П., Землянский Н.Н. Методы элементоорганический химии. Сурьма, висмут. М.: Наука, 1976. 485 с.
  17. SMART and SAINT-Plus. Version 5.0. Data Collection and Processing Software for the SMART System. Madison (WI, USA): Bruker AXS Inc., 1998.
  18. SHELXTL/PC. Version 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Madison (WI, USA): Bruker AXS Inc., 1998.
  19. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. A-ppl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  20. Cordero B., Gómez V., Platero-Prats A.E. et al. // Dalton Trans. 2008. V. 21. P. 2832. https://doi.org/10.1039/B801115J
  21. Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. № 19. P. 5806. https://doi.org/10.1021/jp8111556
  22. Ferrer E.G., Williams P.A.M., Castellano E.E., Piro O.E. // Z. Anorg. Allg. Chem. 2002. V. 628. P. 1979. https://doi.org/10.1002/1521-3749(200209)628:9/10< 1979::AID-ZAAC1979>3.0.CO;2-V
  23. Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. М.: Мир; БИНОМ. Лаборатория знаний, 2006. 438 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (483KB)
3.

Baixar (439KB)
4.

Baixar (434KB)
5.

Baixar (375KB)
6.

Baixar (524KB)
7.

Baixar (428KB)


Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies