Bromoantimonates(III) vs. Bromobismuthates(III): Differences in the Tendency for the Formation of Polynuclear Complexes
- Authors: Usoltsev A.N.1, Korol’kov I.V.1, Adonin S.A.1
 - 
							Affiliations: 
							
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
 
 - Issue: Vol 49, No 6 (2023)
 - Pages: 341-346
 - Section: Articles
 - URL: https://journals.rcsi.science/0132-344X/article/view/137283
 - DOI: https://doi.org/10.31857/S0132344X22600400
 - EDN: https://elibrary.ru/UPZMDC
 - ID: 137283
 
Cite item
Full Text
Abstract
Pyridine-based Sb(III) bromide complexes with doubly charged cations, (PyC3)3[Sb2Br9]2 (I), (PyC4)[Sb2Br8] (II), (PyC5)2[α-Sb4Br16] (III), (PyC6)2[Sb2Br10] (IV), (4-MePyC2)2[Sb2Br10] (V), (4‑MePyC3)2[α-Sb4Br16] (VI), and (4-MePyC5)2[α-Sb4Br16] (VII), were synthesized and characterized by X-ray diffraction (CCDC nos. 2204718–2204724). The structures of these compounds were compared with the structures of related bromobismuthates(III).
About the authors
A. N. Usoltsev
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
														Email: adonin@niic.nsc.ru
				                					                																			                												                								Россия, Новосибирск						
I. V. Korol’kov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
														Email: adonin@niic.nsc.ru
				                					                																			                												                								Россия, Новосибирск						
S. A. Adonin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
							Author for correspondence.
							Email: adonin@niic.nsc.ru
				                					                																			                												                								Россия, Новосибирск						
References
- Wu L.-M., Wu X.-T., Chen L. // Coord. Chem. Rev. 2009. V. 253. № 23–24. P. 2787. https://doi.org/10.1016/J.CCR.2009.08.003
 - Adonin S.A., Sokolov M.N., Fedin V.P. // Coord. Chem. Rev. 2016. V. 312. P. 1. https://doi.org/10.1016/J.CCR.2015.10.010
 - Yue C.-Y., Hu B., Lei X.-W. et al. // Inorg. Chem. 2017. V. 56. № 18. P. 10962. https://doi.org/10.1021/acs.inorgchem.7b01171
 - Lei X.-W., Yue C.-Y., Wang S. et al. // Dalton Trans. 2017. V. 46. № 13. P. 4209. https://doi.org/10.1039/c7dt00262a
 - Lei X.-W., Yue C.-Y., Wu F. et al. // Inorg. Chem. Commun. 2017. V. 77. P. 64. https://doi.org/10.1016/J.INOCHE.2017.01.010
 - Lei X.-W., Yue C.-Y., Zhao J.-Q. et al. // Inorg. Chem. 2015. V. 54. № 22. P. 10593. https://doi.org/10.1021/acs.inorgchem.5b01324
 - Bi W., Leblanc N., Mercier N. et al. // Chem. Mater. 2009. V. 21. № 18. P. 4099. https://doi.org/10.1021/cm9016003
 - Wojta M., Bator G., Jakubas R. et al. // J. Phys. Condens. Matter 2003. V. 15. № 33. P. 5765. https://doi.org/10.1088/0953-8984/15/33/310
 - Leblanc N., Mercier N., Allain M. et al. // J. Solid State Chem. 2012. V. 195. P. 140. https://doi.org/10.1016/J.JSSC.2012.03.020
 - Marchenko E.I., Fateev S.A., Petrov A.A. et al. // J. Phys. Chem. C. 2019. V. 123. № 42. P. 26036. https://doi.org/10.1021/acs.jpcc.9b08995
 - Frolova L.A., Anokhin D.V., Piryazev A.A. et al. // J. Phys. Chem. Lett. 2017. V. 8. № 7. P. 1651. https://doi.org/10.1021/acs.jpclett.7b00210
 - Belich N.A., Tychinina A.S., Kuznetsov V.V. et al. // Mendeleev Commun. 2018. V. 28. № 5. P. 487. https://doi.org/10.1016/j.mencom.2018.09.011
 - Fateev S.A., Petrov A.A., Khrustalev V.N. et al. // Chem. Mater. 2018. V. 30. № 15. P. 5237. https://doi.org/10.1021/acs.chemmater.8b01906
 - Petrov A.A., Sokolova I.P., Belich N.A. et al. // J. Phys. Chem. C. 2017. V. 121. № 38. P. 20739. https://doi.org/10.1021/acs.jpcc.7b08468
 - Fateev S.A., Stepanov N.M., Petrov A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 992. https://doi.org/10.1134/S0036023622070075
 - Fateev S.A., Khrustalev V.N., Simonova A.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 997. https://doi.org/10.1134/S0036023622070087
 - Petrov A.A., Marchenko E.I., Fateev S.A. et al. // Mendeleev Commun. 2022. V. 32. № 3. P. 311. https://doi.org/10.1016/j.mencom.2022.05.006
 - Petrov A.A., Fateev S.A., Khrustalev V.N. et al. // Chem. Mater. 2020. V. 32. № 18. P. 7739. https://doi.org/10.1021/acs.chemmater.0c02156
 - Sharutin V.V., Egorova I.V., Klepikov N.N. et al. // Russ. J. Inorg. Chem. 2009. V. 54. № 11. P. 1768. https://doi.org/10.1134/S0036023609110126
 - Krautscheid H. // Zeitschrift Anorg. Allg. Chem. 1995. V. 621. № 12. P. 2049. https://doi.org/10.1002/zaac.19956211212
 - Krautscheid H., Vielsack F. // Angew. Chem. Int. Ed. 1995. V. 34. № 18. P. 2035. https://doi.org/10.1002/anie.199520351
 - Adonin S.A., Sokolov M.N., Fedin V.P. // Russ. J. Inorg. Chem. 2017. V. 62. № 14. https://doi.org/10.1134/S0036023617140029
 - Mercier N., Louvain N., Bi W. // CrystEngComm. 2009. V. 11. № 5. P. 720. https://doi.org/10.1039/b817891g
 - Adonin S.A., Gorokh I.D., Novikov A.S. et al. // Polyhedron. 2018. V. 139. https://doi.org/10.1016/j.poly.2017.11.002
 - Adonin S.A., Gorokh I.D., Samsonenko D.G. et al. // Polyhedron. 2019. V. 159. P. 318. https://doi.org/10.1016/J.POLY.2018.12.017
 - Fisher G.A., Norman N.C. // Adv. Inorg. Chem. 1994. V. 41. P. 233. https://doi.org/10.1016/S0898-8838(08)60173-7
 - Kotov V.Y., Ilyukhin A.B., Simonenko N.P. et al. // Polyhedron. 2017. V. 137. P. 122. https://doi.org/10.1016/J.POLY.2017.08.016
 - Kotov V.Y., Simonenko N.P., Ilyukhin A.B. // Mendeleev Commun. 2017. V. 27. № 5. P. 454. https://doi.org/10.1016/J.MENCOM.2017.09.007
 - Kotov V.Y., Ilyukhin A.B., Sadovnikov A.A. et al. // Mendeleev Commun. 2017. V. 27. № 3. P. 271. https://doi.org/10.1016/J.MENCOM.2017.05.018
 - Buikin P.A., Rudenko A.Y., Baranchikov A.E. et al. // Russ. J. Coord. Chem. 2018. V. 44. № 6. P. 373. https://doi.org/10.1134/S1070328418060015
 - Chang J.-C., Ho W.-Y., Sun I.-W. et al. // Polyhedron. 2010. V. 29. № 15. P. 2976. https://doi.org/10.1016/j.poly.2010.08.010
 - Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
 - Hübschle C.B., Sheldrick G.M., Dittrich B. et al. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1281. https://doi.org/10.1107/S0021889811043202
 - Zhang W., Sun Z., Zhang J. et al. // J. Mater. Chem. C. 2017. V. 5. № 38. P. 9967. https://doi.org/10.1039/c7tc02721d
 - Stewart J.M., McLaughlin K.L., Rossiter J.J. et al. // Inorg. Chem. 1974. V. 13. № 11. P. 2767. https://doi.org/10.1021/ic50141a046
 - Terao H., Ninomiya S., Hashimoto M. et al. // J. Mol. Struct. 2010. V. 965. № 1–3. P. 68. https://doi.org/10.1016/J.MOLSTRUC.2009.11.040
 - Kharrat H., Kamoun S., Michaud F. // Acta Crystallogr. E. 2013. V. 69. № 7. P. M353. https://doi.org/10.1107/S1600536813014335
 - Sun Z., Zeb A., Liu S. et al. // Angew. Chem. Int. Ed. 2016. V. 55. № 39. P. 11854. https://doi.org/10.1002/anie.201606079
 - Hall M., Nunn M., Begley M.J. et al. // Dalton Trans. 1986. № 6. P. 1231. https://doi.org/10.1039/DT9860001231
 - Wojtaś M., Jakubas R., Ciunik Z. et al. // J. Solid State Chem. 2004. V. 177. № 4–5. P. 1575. https://doi.org/10.1016/J.JSSC.2003.12.011
 - Bujak M., Zaleski J. // Acta Crystallogr. E. 2007. V. 63. № 1. P. M102. https://doi.org/10.1107/S1600536806051920
 - Jaschinski B., Blachnik R., Reuter H. // Z. Anorg. Allg. Chem. 1999. V. 625. № 4. P. 667. https://doi.org/10.1002/(SICI)1521-3749(199904)625: 4<667::AID-ZAAC667>3.0.CO;2-B
 - Porter S.K., Jacobson R.A. // J. Chem. Soc. A. 1970. P. 1359. https://doi.org/10.1039/J19700001359
 - Jha N.K., Rizvi S.S.A. // J. Inorg. Nucl. Chem. 1974. V. 36. № 7. P. 1479. https://doi.org/10.1016/0022-1902(74)80610-X
 - Wang Q., Zhang W.-Y., Shi P.-P. et al. // Chem. – An Asian J. 2018. V. 13. № 19. P. 2916. https://doi.org/10.1002/asia.201801056
 - Wang Y.K., Wu Y.L., Lin X.Y. et al. // J. Mol. Struct. 2018. V. 1151. P. 81. https://doi.org/10.1016/j.molstruc.2017.09.033
 - Dennington A.J., Weller M.T. // Dalton Trans. 2018. V. 47. № 10. P. 3469. https://doi.org/10.1039/c7dt04280a
 - Sharutin V.V., Pakusina A.P., Sharutina O.K. et al. // Russ. J. Coord. Chem. 2004. V. 30. № 8. P. 541. https://doi.org/10.1023/B:RUCO.0000037432.61330.07
 - Antolini L., Benedetti A., Fabretti A.C. et al. // Dalton Trans. 1988. № 9. P. 2501. https://doi.org/10.1039/DT9880002501
 - Wojtaś M., Bil A., Gagor A. et al. // CrystEngComm. 2016. V. 18. № 14. P. 2413. https://doi.org/10.1039/c6ce00160b
 - Alcock N.W., Ravindran M., Willey G.R. // Chem. Commun. 1989. № 15. P. 1063. https://doi.org/10.1039/C39890001063
 - Krautscheid H. // Z. Anorg. Allg. Chem. 1999. V. 625. № 2. P. 192. https://doi.org/10.1002/(SICI)1521-3749(199902)625: 2<192::AID-ZAAC192>3.0.CO;2-6
 - Usoltsev A.N., Sukhikh T.S., Novikov A.S. et al. // Inorg. Chem. 2021. https://doi.org/10.1021/acs.inorgchem.0c03699
 - Adonin S.A., Rakhmanova M.I., Samsonenko D.G. et al. // Inorg. Chim. Acta. 2016. V. 450. https://doi.org/10.1016/j.ica.2016.06.010
 - Usol’tsev A.N., Sokolov M.N., Fedin V.P. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 6. P. 827. https://doi.org/10.1134/S003602362106019X
 - Adonin S.A., Gorokh I.D., Samsonenko D.G. et al. // Inorg. Chim. Acta. 2018. V. 469. https://doi.org/10.1016/j.ica.2017.08.058
 - Usol’tsev A.N., Petrov M.D., Korol’kov I.V. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 9. P. 620. https://doi.org/10.1134/S107032842108008X
 - Adonin S.A., Sokolov M.N., Fedin V.P. // J. Struct. Chem. 2019. V. 60. № 10. P. 1655. https://doi.org/10.1134/S0022476619100111
 
Supplementary files
				
			
					
						
						
						
						
				




