Ligand Metathesis in Nickel(II) Complexation with closo-Decaborate Anion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Nickel(II) complexation with the closo-decaborate anion in water and acetonitrile is studied. Complexes [Ni(solv)6][B10H10] (solv = H2O (I) or CH3CN (II)) are isolated. The complexes are characterized by elemental analysis and IR spectroscopy. Complex [Ni(CH3CN)5(H2O)]0.75[Ni(CH3CN)4(H2O)2]0.25[B10H10]·0.5H2O (III) is isolated from an acetonitrile–water system. The structure of complex III is solved by X-ray diffraction (XRD) (CIF file CCDС no. 2224702). A mechanism of ligand metathesis in the complexation of nickel(II) is proposed.

About the authors

V. V. Avdeeva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia

Email: avdeeva.varvara@mail.ru
Россия, Москва

A. S. Kubasov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia

Email: avdeeva.varvara@mail.ru
Россия, Москва

S. E. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia

Email: avdeeva.varvara@mail.ru
Россия, Москва

L. V. Goeva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia

Email: avdeeva.varvara@mail.ru
Россия, Москва

E. A. Malinina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia

Email: avdeeva.varvara@mail.ru
Россия, Москва

N. T. Kuznetsov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia

Author for correspondence.
Email: avdeeva.varvara@mail.ru
Россия, Москва

References

  1. Greenwood N.N., Earnshaw A. Chemistry of the Elements. Butterworth-Heinemann, 1997. 1364 p.
  2. Boron Science: New Technologies and Applications / Ed. Hosmane N.S. CRC Press, 2012.
  3. Boron-Based Compounds: Potential and Emerging Applications in Medicine / Eds. Hey-Hawkins E., Viñas Teixidor C. John Wiley & Sons Ltd., 2018. https://doi.org/10.1002/9781119275602
  4. Сиваев И.Б. // Журн. неорган. химии. 2020. № 12. С. 1643 (Sivaev I.B. // Russ. J. Inorg. Chem. 2020. V. 65. P. 1854). https://doi.org/10.1134/S0036023620120165
  5. King R.B. // Chem. Rev. 2001. V. 101. P. 1119. https://doi.org/10.1021/cr000442t
  6. Chen Z., King R.B. // Chem. Rev. 2005. V. 105. P. 3613. https://doi.org/10.1021/cr0300892
  7. Ren L., Han Y., Hou X., Wu J. // Chem. 2021. V. 7. P. 3442. https://doi.org/10.1016/j.chempr.2021.11.003
  8. Klyukin I.N., Vlasova Yu.S., Novikov A.S. et al. // Symmetry. 2021. V. 13. P. 464. https://doi.org/10.3390/sym13030464
  9. Núñez R., Romero I., Teixidor F., Viñas C. // Chem. Soc. Rev. 2016. V. 45. P. 5147. https://doi.org/10.1039/C6CS00159A
  10. Knapp C. // Comprehensive Inorganic Chemistry II / Eds. Reedijk J., Poeppelmeier K. Elsevier, 2013. P. 651. https://doi.org/10.1016/B978-0-08-097774-4.00125-X
  11. Plesek J. // Chem. Rev. 1992. V. 92. P. 269.
  12. Teixidor F., Vinas C., Demonceau A., Núnez R. // Pure Appl. Chem. 2003. V. 75. P. 1305.
  13. Goswami L.N., Ma L., Chakravarty Sh. et al. // Inorg. Chem. 2013. V. 52. P. 1694.
  14. Sivaev I.B., Bregadze V.I., Kuznetsov N.T. // Russ. Chem. Bull. 2002. V. 51. P. 1362.
  15. Авдеева В.В., Гараев Т.М., Малинина Е.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 1. С. 33 (Avdeeva V.V., Garaev, T.M. Malinina E.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 28). https://doi.org/10.1134/S0036023622010028
  16. Sivaev I.B., Bregadze V.I. // Eur. J. Inorg. Chem. 2009. P. 1433.
  17. Sivaev I.B., Prikaznov A.V., Naoufal D. // Collect. Czech. Chem. Commun. 2010. V. 75. P. 1149. https://doi.org/10.1135/cccc2010054
  18. Zhao X., Yang Z., Chen H. et al. // Coord. Chem. Rev. 2021. V. 444. P. 214042. https://doi.org/10.1016/j.ccr.2021.214042
  19. Sivaev I.B., Bregadze V.I., Sjöberg S. // Collect. Czech. Chem. Commun. 2002. V. 67. P. 679. https://doi.org/10.1135/cccc20020679
  20. Matveev E.Y., Avdeeva V.V., Zhizhin K.Y. et al. // Inorganics. 2022. V. 10. P. 238. https://doi.org/10.3390/inorganics10120238
  21. Клюкин И.Н., Колбунова А.В., Селиванов Н.А. и др. // Журн. неорган. химии. 2021. Т. 66. С. 1679 (Klyukin I.N., Kolbunova A.V., Selivanov N.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1798). https://doi.org/10.1134/S003602362112007X
  22. Zhao X., Yang Z., Chen H. et al. // Coord. Chem. Rev. 2021. V. 444. P. 214042. https://doi.org/10.1016/j.ccr.2021.214042
  23. Авдеева В.В., Малинина Е.А., Кузнецов Н.Т. // Журн. неорган. химии. 2020. 65. № 3. С. 224 (Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2020. V. 65. P. 335). https://doi.org/10.1134/S003602362003002X
  24. Avdeeva V.V., Vologzhanina A.V., Korolenko S.E. et al. // Polyhedron. 2022. V. 223. P. 115932. https://doi.org/10.1016/j.poly.2022.115932
  25. Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Coord. Chem. Rev. 2022. V. 469. P. 214636. https://doi.org/10.1016/j.ccr.2022.214636
  26. Авдеева В.В., Кубасов А.С., Корленко С.Е. и др. // Журн. неорган. химии. 2022. Т. 67. № 5. С. 582 (Avdeeva V.V., Kubasov A.S., Korolenko S.E. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 628). https://doi.org/10.1134/S0036023622050023
  27. Avdeeva V.V., Vologzhanina A.V., Kubasov A.S. et al. // Inorganics. 2022. V. 10. P. 99. https://doi.org/10.3390/inorganics10070099
  28. Kravchenko E.A., Gippius A.A., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2020. V. 65. P. 546. https://doi.org/10.1134/S0036023620040105
  29. Авдеева В.В., Полякова И.Н., Вологжанина А.В. и др. // Журн. неорган. химии. 2016. Т. 61. № 9. С. 1182 (Avdeeva V.V., Polyakova I.N., Vologzhanina A.V. et al. // Russ. J. Inorg. Chem. 2016. V. 61. P. 1125). https://doi.org/10.1134/S0036023616090023
  30. Малинина Е.А., Гоева Л.В., Бузанов Г.А. и др. // Журн. неорган. химии. 2020. Т. 65. № 1. С. 124 (Malinina E.A., Goeva L.V., Buzanov G.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 126). https://doi.org/10.1134/S0036023620010118
  31. Малинина Е.А., Гоева Л.В., Бузанов Г.А. и др. // Журн. неорган. химии. 2019. Т. 64. № 11. С. 1136 (Malinina E.A., Goeva L.V., Buzanov G.A. et al. // Russ. J. Inorg. Chem. 2019. V. 64. P. 1325). https://doi.org/10.1134/S0036023619110123
  32. Tiritiris I., Van Ng.-D., Schleid Th. // Z. Anorg. Allg. Chem. 2004. V. 630. P. 1763.
  33. Van N.-D. New Salt-Like Dodecahydro-closo-Dodecaborates and Efforts for the Partial Hydroxylation of [B12H12]2– Anions. PhD Thesis. Institut für Anorganische Chemie der Universität Stuttgart. 2009.
  34. Каюмов А., Гоева Л.В., Солнцев К.А., Кузнецов Н.Т. // Журн. неорган. химии. 1988. Т. 33. С. 1771.
  35. Каюмов А.Д., Гоева Л.В., Кузнецов Н.Т. и др. // Журн. неорган. химии. 1988. Т. 33. № 8. С. 1936.
  36. Авдеева В.В., Полякова И.Н., Гоева Л.В. и др. // Журн. неорган. химии. 2016. Т. 61. № 3. С. 318 (Avdeeva V.V., Polyakova I.N., Goeva L.V. et al. // Russ. J. Inorg. Chem. 2016. V. 61. P. 302). https://doi.org/10.1134/S0036023616030037
  37. Zhao X., Yao C., Chen H. et al. // J. Mater. Chem. A. 2019. V. 7. P. 20945. https://doi.org/10.1039/C9TA06573C
  38. Fu Z., Cai Z., Pan K., Zhang L. // Chin. J. Struct. Chem. 1984. V. 3. P. 231.
  39. Kayumov A., Solntsev K.A., Goeva L.V., Kuznetsov N.T. // Russ. J. Inorg. Chem. 1990. V. 35. P. 1729.
  40. Авдеева В.В., Полякова И.Н., Гоева Л.В. и др. // Журн. неорган. химии. 2015. Т. 60. № 7. С. 901 (Avdeeva V.V., Polyakova I.N., Goeva L.V. et al. // Russ. J. Inorg. Chem. 2015. V. 60. P. 817). https://doi.org/10.1134/S0036023615070037
  41. Zhang Z., Zhang Y., Li Zh. et al. // Eur. J. Inorg. Chem. 2018. V. 8. P. 981. https://doi.org/10.1002/ejic.201701206
  42. Avdeeva V.V., Polyakova I.N., Goeva L.V. et al. // Inorg. Chim. Acta. 2016. V. 451. P. 129. https://doi.org/10.1016/j.ica.2016.07.016
  43. Гоева Л.В., Авдеева В.В., Малинина Е.А. и др. // Журн. неорган. химии. Т. 63. № 8. С. 1015 (Goeva L.V., Avdeeva V.V., Malinina, E.A. et al. // Russ. J. Inorg. Chem. 2018. V. 63. P. 1050). https://doi.org/10.1134/S0036023618080089
  44. Матвеев Е.Ю., Новиков И.В., Кубасов А.С. и др. // Журн. неорган. химии. 2021. Т. 66. № 2. С. 187 (Matveev E.Yu., Novikov I.V., Kubasov A.S. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 187). https://doi.org/10.1134/S0036023621020121
  45. Avdeeva V.V., Kubasov A., Korolenko S.E. et al. // Polyhedron. 2022. V. 217. P. 115740. https://doi.org/10.1016/j.poly.2022.115740
  46. Avdeeva V.V., Vologzhanina A.V., Ugolkova E.A. et al. // J. Solid State Chem. 2021. V. 296. P. 121989. https://doi.org/10.1016/j.jssc.2021.121989
  47. Zakharova I.A., Kuznetsov N.T., Gaft Yu.L. // Inorg. Chem. Acta. 1978. V. 28. P. 271. https://doi.org/10.1016/S0020-1693(00)87446-0
  48. Kubasov A.S., Matveev E.Y., Retivov V.M. et al. // Russ. Chem. Bull. 2014. V. 63. P. 187. https://doi.org/10.1007/s11172-014-0412-2
  49. Knoth W.H., Miller H.C., Sauer J.C. et al. // Inorg. Chem. 1964. V. 3. P. 159.
  50. SAINT, Madison (WI, USA): Bruker AXS Inc., 2018.
  51. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. P. 3. https://doi.org/10.1107/S1600576714022985
  52. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  53. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  54. Cook T.D., Tyler S.F., McGuire C.M. et al. // ACS Omega. 2017. V. 2. P. 3966. https://doi.org/10.1021/acsomega.7b00714
  55. Pegis M.L., Roberts J.A.S., Wasylenko D.J. et al. // Inorg. Chem. 2015. V. 54. P. 11883. https://doi.org/10.1016/j.electacta.2021.139465
  56. Matsia S., Kaoulla A., Menelaoua M. et al. // Polyhedron. 2022. V. 212. P. 115577. https://doi.org/10.1016/j.poly.2021.115577
  57. Prabha D., Singh D., Kumar P., Gupta R. // Inorg. Chem. 2021. V. 60. P. 17889. https://doi.org/10.1021/acs.inorgchem.1c02479
  58. He Y., Gorden J.D., Goldsmith C.R. // Inorg. Chem. 2011. V. 50. P. 12651. https://doi.org/10.1016/j.ica.2021.120526
  59. Benmansour S., Setifi F., Triki S., Gómez-García C.J. // Inorg. Chem. 2012. V. 51. P. 2359. https://doi.org/10.1021/ic202361p
  60. Begum A., Seewald O., Flörke U., Henkel G. // ChemSelect. 2022. V. 1. P. 2257. https://doi.org/10.1002/slct.201600505
  61. Avdeeva V.V., Malinina E.A., Churakov A.V. et al. // Polyhedron. 2019. V. 169. P. 144. https://doi.org/10.1016/j.poly.2019.05.018

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (395KB)
3.

Download (562KB)
4.

Download (155KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies