Influence of the Aromatic Ligand Nature and Synthesis Conditions on the Structures of the Copper Pentafluorobenzoate Complexes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New pentafluorobenzoate (Рfb) copper complexes with 2,3- and 3,5-lutidine (2,3- and 3,5-Lut, respectively), quinoline (Quin), and 1,10-phenanthroline (Рhen) ([Cu2(MeCN)2(Рfb)4] (I), [Cu(2,3-Lut)2(Pfb)2] (II), [Cu(3,5-Lut)4(Pfb)2] (III), [Cu(Quin)2(Pfb)2] (IV), and [Cu2(Phen)2(Pfb)4] (V)) are synthesized by the newly developed methods and characterized. The unusual heteroanionic pentafluorobenzoate benzoate (Вnz) ionic compound [Cu2(Рhen)2(Рfb)3]+(Рnz)– (VI) is synthesized. It is shown that the four-bridge binuclear metal cage of complex I is not retained in the reactions with various pyridine derivatives. In the case of such α-substituted pyridines as 2,3-lutidine and quinoline, the compositions and structures of the final products of the reactions with copper pentafluorobenzoate are independent of the initial ratio of the reagents and crystallization conditions. It is revealed by the Hirshfeld surface analysis that π···π, C–F···π, C–H···F, and F···F interactions make the major contribution to the stabilization of crystal packings of the synthesized complexes.

About the authors

V. V. Kovalev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: shmelevma@yandex.ru
Россия, Москва

M. A. Shmelev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: shmelevma@yandex.ru
Россия, Москва

G. N. Kuznetsova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: shmelevma@yandex.ru
Россия, Москва

V. I. Erakhtina

School no. 1449 named after Hero of the Soviet Union M.V. Vodop’yanov, Moscow, Russia

Email: shmelevma@yandex.ru
Россия, Москва

G. A. Razgonyaeva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: shmelevma@yandex.ru
Россия, Москва

T. M. Ivanova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: shmelevma@yandex.ru
Россия, Москва

M. A. Kiskin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: shmelevma@yandex.ru
Россия, Москва

A. A. Sidorov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: shmelevma@yandex.ru
Россия, Москва

I. L. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: shmelevma@yandex.ru
Россия, Москва

References

  1. Zhang Z., Zaworotko M.J. // Chem. Soc. Rev. 2014. V. 43. P. 5444.
  2. Bradberry S.J., Savyasachi A.J., Martinez-Calvo M., Gunnlaugsson T. // Coord. Chem. Rev. 2014. V. 273–274. P. 226.
  3. Chen D.-M., Zhang N.-N., Liu C.-S., Du M. // J. Mater. Chem. C. 2017. V. 5. P. 2311.
  4. Kohnke F.H., Mathias J.P., Fraser Stoddart J. // Angew. Chem. 1989. V. 28. № 8. P. 1103.
  5. Bazhina E.S., Bovkunova A.A., Shmelev M.A. et al. // Polyhedron. 2022. V. 228. Art. 116174.
  6. Barry D.E., Caffreya D.F., Gunnlaugsson T. // Chem. Soc. Rev. 2016. V. 45. P. 3244.
  7. Su J., Yuan S., Cheng Y.-X. et al. // Chem. Sci. 2021. V. 12. P. 14254.
  8. Shmelev M.A., Kuznetsova G.N., Gogoleva N.V. et al. // Russ. Chem. Bull. 2021. V. 7. № 5. P. 830.
  9. Bondarenko M.A., Novikov A.S., Sokolov M.N., Adonin S.A. // Organics. 2022. V. 10. № 10. P. 151.
  10. Adonin S.A., Bondarenko M.A., Novikov A.S. et al. // Crystals. 2020. V. 10. P. 289.
  11. Shmelev M.A., Chistyakov A.S., Razgonyaeva G.A. et al. // Crystals. 2022. V. 12. P. 508.
  12. Zhou W.-L., Chen Y., Lin W., Liu Y. // Chem. Commun. 2021. V. 57 P. 11443.
  13. Koshevoy I.O., Krause M., Klein A. // Coord. Chem. Rev. 2020. V. 405. P. 213094.
  14. Adonin S.A., Novikov A.S., Sokolov M.N., Fedin V.P. // Russ. J. Coord. Chem. 2020. V. 46. P. 302.
  15. Adonin S.A., Novikov A.S., Fedin V.P. // Russ. J. Coord. Chem. 2020. V. 46. P. 37.
  16. Shmelev M.A., Voronina J.K., Evtyukhin M.A. et al. // Inorganics. 2022. V. 10. № 11. Art. 194.
  17. Sharma R.P., Saini A., Kumar S. et al. // J. Mol. Struct. 2017. V. 1128. P. 135.
  18. Shmelev M.A., Voronina Yu.K., Chekurova S. S. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 551.
  19. Kong Y.-J., Han L.-J., Fan L.-T. et al. // J. Fluor. Chem. 2016. V. 186. P. 40.
  20. Han L.-J., Kong Y.-J. // Z. Anorg. Allg. Chem. 2014. V. 640. № 10. P. 2007.
  21. Shmelev M.A., Voronina Yu. K. Gogoleva N.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 4. P. 224.
  22. Malkerova I.P., Kayumova D.B., Belova E.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 10. P. 608.
  23. Pinto C.B., Dos Santos L.H.R., Rodrigues B.L. // J. A-ppl. Crystallogr. 2020. V. 53. P. 1321.
  24. Sen S., Saha M.K., Gupta T. et al. // J. Chem. Crystallogr. 1998. V. 28. P. 771.
  25. Andruh M., Roesky H.W., Noltemeyer M., Schmidt H.-G. // Polyhedron. 1993. V. 12. № 23. P. 2901.
  26. Harding M.M. // Acta Crystallogr. D. 2000. V. 56. P. 857.
  27. Bondarenko M.A., Abramov P.A., Novikov A.S. et al. // Polyhedron. 2022. V. 214. Art. 15644.
  28. Li Z., Yuan Y., Zhang Y. et al. // Z. Anorg. Allg. Chem. 2017. V. 643. № 10. P. 647.
  29. Sanchez-Sala M., Pons J., Álvarez-Larena Á. et al. // ChemistrySelect. 2017. V. 2. № 35. P. 11574.
  30. Obaleye J.A., Ajibola A.A., Bernardus V.B., Hosten E.C. // J. Mol. Struct. 2020. V. 1203. Art.127435.
  31. Rajakannu P., Kaleeswaran D., Banerjee S. et al. // Inorg. Chim. Acta. 2019. V. 486. P. 283.
  32. Shmelev M.A., Gogoleva N.V., Kuznetsova G.N. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 8. P. 557.
  33. Larionov S.V., Glinskaya L.A., Klevtsova R.F. et al. // Z. Neorg. Khim. 1991. V. 36. P. 2514.
  34. Han L.-J., Kong Y.-J., Huang M.-M. // Inorg. Chim. Acta. 2020. V. 514. Art. 120019.
  35. Hashim I.I., Scattolin T., Tzouras N.V. et al. // Dalton Trans. 2022. V. 51. P. 231.
  36. Makoto H., Yoshiyuki I., Taku Y. et al. // Bull. Chem. Soc. Jpn. 2009. V. 82. № 10. P. 1277.
  37. Han L.-J., Kong Y.-J. // Acta Crystallogr. C. 2014. V. 70. № 11. P. 1017.
  38. Sharma R.P., Saini A., Singh S. et al. // J. Fluor. Chem. 2010. V. 131. № 4. P. 456.
  39. Ge C., Zhang X., Yu F. et al. // J. Chem. Crystallogr. 2008. V. 38. P. 501.
  40. Kuznetsova G.N., Nikolaevskii S.A., Yambulatov D.S. et al. // J. Struct. Chem. V. 62. № 2. P. 184.
  41. SMART (control) and SAINT (integration). Software. Version 5.0. Madison (WI, USA): Bruker AXS Inc., 1997.
  42. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
  43. Spek A.L. // Acta Crystallogr. D. 2009. V. 65. № 2. P. 148.
  44. Dolomanov O.V., Bourhis L.J., Gildea R. et al. // J. A-ppl. Crystallogr. 2009. V. 42. P. 339.
  45. Casanova D., Llunell M., Alemany P., Alvarez S. // Chem. Eur. J. 2005. V. 11. P. 1479.
  46. Spackman P.R., Turner M.J., McKinnon J.J. et al. // J. Appl. Cryst. 2021. V. 54. P. 1006.
  47. Edwards A.J., Mackenzie C.F., Spackman P.R. et al. // Faraday Discuss. 2017. V. 203. P. 93.
  48. Shmelev M.A., Gogoleva N.V., Ivanov V.K. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 9. P. 539.
  49. Shmelev M.A., Polunin R.A. Gogoleva N.V. et al. // Molecules. 2021. V. 26. № 14. P. 4296.
  50. Belousov Y.A., Kiskin M.A., Sidoruk A.V. et al. // Aust. J. Chem. 2022. V. 75. № 9. P. 572.
  51. Shmelev M.A., Kiskin M.A., Voronina J.K. et al. // Materials. 2020. V. 13. № 24. P. 5689.
  52. Sidorov A.A., Gogoleva N.V., Bazhina E.S. et al. // Pure Appl. Chem. 2020. V. 92. № 7. P. 1093.
  53. Bovkunova A.A., Bazhina E., Evstifeev I.S. et al. // Dalton Trans. 2021. V. 50. P. 12275.
  54. Pushikhina O.S., Kozlyakova E.S., Karpova E.V., Tafeenko V.A. // Z. Anorg. Allg. Chem. 2021. V. 647. № 22. P. 2023.
  55. Li Y., Zhang C., Yu J.-W. et al. // Inorg. Chim. Acta. 2016. V. 445. P. 110.
  56. Ge C., Zhang X., Yin J., Zhang R. // Chin. J. Chem. 2010. V. 28. № 10. P. 2083.
  57. Shmelev M.A., Gogoleva N.V., Sidorov A.A. et al. // Inorg. Chim. Acta. 2021. V. 515. P. 120050.
  58. Shmelev M.A., Gogoleva N.V., Sidorov A.A. et al. // ChemSelect. 2020. V. 5. № 28. P. 8475.
  59. Shmelev M.A., Voronina Yu.K., Gogoleva N.V. et al. // Russ. Chem. Bull. 2020. V. 69. P. 1544.
  60. Melnikov S.N., Evstifeev I.S., Nikolaveskii S.A. et al. // New J. Chem. 2021. V. 45. P. 13349.
  61. Nikolaevskii S.A., Petrov P.A., Sukhikh T.S. et al. // Inorg. Chim. Acta. 2020. V. 508. P. 119643.
  62. Gogoleva N.V., Kuznetsova G.N., Shmelev M.A. et al. // J. Solid State Chem. 2021. V. 294. Art. 121842.
  63. Wu B., Lu W., Zheng X. // Transition Met. Chem. 2003. V. 28. P. 323.
  64. Shmelev M.A., Kuznetsova G.N., Dolgushin F.M. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 127.
  65. Yambulatov D.S., Nikolaevskii S.A., Lutsenko I.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 772.
  66. Zeng Z., Cai J., Li F. et al. // RSC Adv. 2021. V. 11. P. 40040.
  67. Sharma P., Dutta D., Gomila R.M. et al. // Polyhedron. 2021. V. 208. Art. 115409.
  68. Lah N., Giester G., Segedin P., Murn A. et al. // Acta Crystallogr. C. 2001. V. 57. P. 546.
  69. Davey G., Stephens F.S. // J. Chem. Soc. A. 1971. P. 1917.
  70. Davey G., Stephens F.S. // J. Chem. Soc. A. 1970. P. 2803.
  71. Kozlevcar B., Lah N., Zlindra D. et al. // Acta Chim. Slov. 2001. V. 48. P. 363.
  72. Kozlevcar B., Murn A., Podlipnik K. et al. // Croat. Chem. Acta. 2004. V. 77. P. 613.
  73. Buijs W., Comba P., Corneli D. et al. // Eur. J. Inorg. Chem. 2001. P. 3143.
  74. Li L.-M., Guo H.-M., Li Y.-F. // Z. Krist New – Cryst. Struct. 2012. V. 227. P. 257.
  75. Dickie D.A., Schatte G., Jennings M.C. et al. // Inorg. Chem. 2006. V. 45. № 4. P. 1646.
  76. Pradilla S.J., Chen H.W., Koknat F.W., Fackler J.P., Jr. // Inorg. Chem. 1979. V. 18. № 12. P. 3519.
  77. Gajewska M.J., Ching W.-M., Wen Y.-S., Hung C.-H. // Dalton Trans. 2014. V. 43. P. 14726.
  78. Ghosh S.K., Bharadwaj P.K. // Inorg. Chem. 2004. V. 43. № 22. P. 6887.
  79. Pretorius J.A., Boeyens J.C.A. // J. Inorg. Nucl. Cchem. 1978. V. 40. № 10. P. 1745.
  80. Baruah J.B., Singh W., Karmakar A. // J. Mol. Struct. 2008. V. 892. № 1–3. P. 84.
  81. Neary M.C., Parkin G. // Polyhedron. 2016. V. 116. P. 189.
  82. Edema J.J.H., Hao S., Gambarotta S., Bensimon C. // Inorg. Chem. 1991. V. 30. № 12. P. 2584.
  83. Li L.-M., Jian F.-F., Ren X.-Y. // Acta Crystrallog. E. V. 65. P. m1041.
  84. Çelenligil-Çetin R., Staples R. J., Stavropoulos P. // Inorg. Chem. 2000. V. 39. № 25. P. 5838.
  85. Singh B., Long J. R., Papaefthymiou G.C., Stavropoulos P. // J. Am. Chem. Soc. 1996. V. 118. № 24. P. 5824.
  86. Tapper A.E., Long J.R., Staples R.J., Stavropoulos P. // Angew. Chem. 2000. V. 39. № 13. P. 2343.
  87. Morozov I.V., Karpova E.V., Glazunova T.Yu. et al. // Russ. J. Coord. Chem. 2016. V. 42. P. 647.
  88. Hubner K., Roesky H.W., Noltemeyer M., Bohra R. // Chem. Ber. 1991. V. 124. P. 515.
  89. He X., Chen F., Zhang D. et al. // Z. Anorg. Allg. Chem. 2019. V. 645. № 23. P. 1341.
  90. Sánchez-Féreza F., Bayés L., Font-Bardia M., Pons J. // Inorg. Chim. Acta. 2019. V. 494. P. 112.
  91. Iqbala M., Sirajuddin M., Ali S. et al. // Inorg. Chim. Acta. 2016. V. 440. P. 129.
  92. Iqbal M., Ali S., Tahir M.N. // J. Struct. Chem. 2018. V. 59. P. 1619.
  93. Ghosh D., Dhibar S., Dey A. et al. // ChemSelect. 2020. V. 5. № 1. P. 75.
  94. Han L.-J., Kong Y.-J., Yan T.-J. et al. // Dalton Trans. 2016. V. 45. P. 18566.
  95. Baur A., Bustin K. A., Aguilera E. et al. // Org. Chem. Front. 2017. V. 4. P. 5194.
  96. Eremina J.A., Lider E.V., Sukhikh T.S. et al // Inorg. Chim. Acta. 2020. V. 510. № 119778.
  97. Mushtaq A., Ali S., Nawaz Tahir M., Haider A. et al. // Russ. J. Inorg. Chem. 2019. V. 64. P. 1365.
  98. Wang K.-H., Gao E.-J. // Inorg. Chim. Acta. 2018. V. 482. P. 221.
  99. Zhao X., Liang D., Liu S. et al. // Inorg. Chem. 2008. V. 47. № 16. P. 7133.
  100. Zhang H.-R., Gu J.-Z., Kirillova M.V., Kirillov A.M. // Inorg. Chem. Front. 2021. V. 8. P. 4209.
  101. Jiang X., Xia H., Zhu Y.-F. et al. // Z. Anorg. Allg. Chem. 2011. V. 637. № 14–15. P. 2273.
  102. Mehrani A., Morsali A., Ebrahimpour P. // J. Coord. Chem. 2013. V. 66. № 5. P. 856.
  103. Revathi P., Mohan J.S., Balakrishnan T. et al. // Acta Crystallogr. E. 2019. V. 75. P. 134.
  104. Orts-Arroyo M., Castro I., Lloreta F., Martínez-Lillo J. // Dalton Trans. 2020. V. 49. P. 9155.
  105. Lazarou K.N., Chadjistamatis I., Terzis A. et al. // Inorg. Chim. Acta. 2010. V. 363. № 1. P. 107.
  106. Le X.-Y., Zhou X.-H., Yu K.-B., Ji L.-N. // Chin. J. Chem. 2000. V. 18. P. 638.
  107. Lazarou K.N., Chadjistamatis I., Terzis A. // Polyhedron. 2010. V. 29. № 2. P. 833.
  108. Li D.-P., Liang X.-Q., Xu Y. et al. // Chin. J. Struct. Chem. 2013. V. 32. P. 1724.
  109. Tian Y.-P., Zhang X.-J., Wu J.-Y. et al. // New J. Chem. 2002. V. 26. P. 1468.
  110. Ghosh A.K., Ghoshal D., Zangrando E. et al. // Inorg. Chem. 2007. V. 46. № 8. P. 3057.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (220KB)
3.

Download (307KB)
4.

Download (347KB)
5.

Download (357KB)
6.

Download (278KB)
7.

Download (442KB)
8.

Download (575KB)
9.

Download (437KB)
10.

Download (471KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies