РАЗРАБОТКА БАКТЕРИАЛЬНОЙ СИСТЕМЫ ЭКСПРЕССИИ ДЛЯ ПОЛУЧЕНИЯ ГЕМСОДЕРЖАЩИХ БЕЛКОВ НЕЙРОГЛОБИНА И ЦИТОХРОМА С В МЕЧЕННОЙ СТАБИЛЬНЫМИ ИЗОТОПАМИ 15N/13C ФОРМЕ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Разработана эффективная система продукции изотопно-меченых гемсодержащих белков нейроглобина и цитохрома с человека. Получены соответствующие штаммы-продуценты, подобраны оптимальные условия культивирования: температура и продолжительность инкубации, состав сред, концентрация индуктора экспрессии. С помощью КД-спектроскопии в дальней и ближней УФ-видимой областях показано, что состав вторичной структуры 15N-нейроглобина близок к расчетному, а ориентация гема в молекулах преимущественно каноническая. Согласно двумерным 1Н/15N-HSQC спектрам ЯМР нейроглобина и цитохрома с человека, белки свернуты в нативную конформацию с преобладанием α-спиральной структуры. Полученная система продукции может быть использована для наработки высокоочищенных препаратов тотально 15N/13C-меченых белков для проведения структурно-динамических исследований с использованием современных методов ЯМР-спектроскопии высокого разрешения.

Об авторах

М. А. Семенова

ФГБУН ГНЦ "Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова" РАН

Москва, Россия

О. М. Смирнова

ФГБУН ГНЦ "Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова" РАН

Москва, Россия

В. В. Бритиков

ГНУ "Институт биоорганической химии НАН Беларуси"

Минск, Беларусь

Е. В. Бритикова

ГНУ "Институт биоорганической химии НАН Беларуси"

Минск, Беларусь

А. П. Ходненко

ФГБУН ГНЦ "Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова" РАН

Москва, Россия

Я. В. Бершацкий

ФГБУН ГНЦ "Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова" РАН

Москва, Россия

А. А. Игнатова

ФГБУН ГНЦ "Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова" РАН

Москва, Россия

Э. В. Бочаров

ФГБУН ГНЦ "Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова" РАН; Московский физико-технический институт (национальный исследовательский университет)

Москва, Россия; Долгопрудный, Россия

М. П. Кирпичников

ФГБУН ГНЦ "Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова" РАН; МГУ имени М.В. Ломоносова, биологический факультет

Москва, Россия; Москва, Россия

Д. А. Долгих

ФГБУН ГНЦ "Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова" РАН; МГУ имени М.В. Ломоносова, биологический факультет

Москва, Россия; Москва, Россия

Р. В. Черткова

ФГБУН ГНЦ "Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова" РАН

Email: cherita@inbox.ru
Москва, Россия

Список литературы

  1. Paoli M., Marles-Wright J., Smith A. // DNA Cell. Biol. 2002. V. 21. P. 271−80. https://doi.org/10.1089/104454902753759690
  2. Smith L.J., Kahraman A., Thornton J.M. // Proteins. 2010. V. 78. P. 2349–2368. https://doi.org/10.1002/prot.22747
  3. Schweitzer-Stenner R. // Molecules. 2022. V. 27. P. 8751. https://doi.org/10.3390/molecules27248751
  4. Verde C., Giordano D., Bruno S. // Antioxidants. 2023. V. 12. P. 321. https://doi.org/10.3390/antiox12020321
  5. Rivera M., Caigan G.A. // Anal. Bioanal. Chem. 2004. V. 378. P. 1464–1483. https://doi.org/10.1007/s00216-003-2340-0
  6. Burmester T., Weich B., Reinhardt S., Hankeln T. // Nature. 2000. V. 407. P. 520–523. https://doi.org/10.1038/35035093
  7. De Simone G., Sbardella D., Oddone F., Pesce A., Coletta M., Ascenzi P. // Cells. 2021. V. 10. P. 3366. https://doi.org/10.3390/cells10123366
  8. de Vidania S., Palomares-Perez I., Frank-García A., Saito T., Saido T.C., Draffin J., Szaruga M., Chavez-Gutierrez L., Calero M., Medina M., Guix F.X., Dotti C.G. // Front. Neurosci. 2020. 14. P. 562581. https://doi.org/10.3389/fnins.2020.562581
  9. Fiocchetti M., Cracco P., Montalesi E., Fernandez V.S., Stuart J.A., Marino M. // Arch. Biochem. Biophys. 2021. V. 701. P. 108823. https://doi.org/10.1016/j.abb.2021.108823
  10. Hankeln T., Ebner B., Fuchs C., Gerlach F., Haberkamp M., Laufs T.L., Roesner A., Schmidt M., Weich B., Wystub S., Saaler-Reinhardt S., Reuss S., Bolognesi M., De Sanctis D., Marden M.C., Kiger L., Moens L., Dewilde S., Nevo E., Avivi A., Weber R.E., Fago A., Burmester T. // J. Inorg. Biochem. 2005. V. 99. P. 110–119. https://doi.org/10.1016/j.jinorgbio.2004.11.009
  11. Brittain T., Skommer J., Raychaudhuri S., Birch N. // Int. J. Mol. Sci. 2010. V. 11. P. 2306–2321. https://doi.org/10.3390/ijms11062306
  12. Fago A., Mathews A.J., Brittain T. // IUBMB Life. 2008. V. 60. P. 398–401. https://doi.org/10.1002/iub.35
  13. Tejero J. // Biochem. Biophys. Res. Commun. 2020. V. 523. P. 567–572. https://doi.org/10.1016/j.bbrc.2019.12.089
  14. Alvarez-Paggi D., Hannibal L., Castro M.A., Oviedo-Rouco S., Demicheli V., Tortora V., Tomasina F., Radi R., Murgida D.H. // Chem. Rev. 2017. V. 117. P. 13382−13460. https://doi.org/10.1021/acs.chemrev.7b00257
  15. Ow Y.P., Green D.R., Hao Z., Mak T.W. // Nat. Rev. Mol. Cell Biol. 2008. V. 9. P. 532−542. https://doi.org/10.1038/nrm2434
  16. Dewilde S., Kiger L., Burmester T., Hankeln T., Baudin-Creuza V., Aerts T., Marden M.C., Caubergs R., Moens L. // J. Biol. Chem. 2001. V. 276. P. 38949–38955. https://doi.org/10.1074/jbc.m106438200
  17. Blank M., Burmester T. // Mol. Biol. Evol. 2012. V. 29. P. 3553–3561. https://doi.org/10.1093/molbev/mss164
  18. Sakamoto K., Kamiya M., Uchida T., Kawano K., Ishimori K. // Biochem. Biophys. Res. Commun. 2010. V. 398. P. 231–236. https://doi.org/10.1016/j.bbrc.2010.06.065
  19. Simonneaux G., Bondon A. // Chem. Rev. 2005. V. 105. P. 2627–2646. https://doi.org/10.1021/cr030731s
  20. Semenova M.A., Chertkova R.V., Kirpichnikov M.P., Dolgikh D.A. // Biomolecules. 2023. V. 13. P. 1233. https://doi.org/10.3390/biom13081233
  21. Bønding S.H., Henty K., Dingley A.J., Brittain T. // Int. J. Biol. Macromol. 2008. V. 43. P. 295–299. https://doi.org/10.1016/j.ijbiomac.2008.07.003
  22. Guidolin D., Agnati L.F., Tortorella C., Marcoli M., Maura G., Albertin G., Fuxe K. // Int. J. Mol. Med. 2014. V. 33. P. 111–116. https://doi.org/10.3892/ijmm.2013.1564
  23. Tiwari B., Chapagain P.P., Üren A. // Sci. Rep. 2018. V. 8. P. 10557. https://doi.org/10.1038/s41598-018-28836-6
  24. Feng Y., Liu X.-C., Li L., Gao S.-Q., Wen G.-B., Lin Y.-W. // ACS Omega. 2022. V. 7. P. 11510–11518. https://doi.org/10.1021/acsomega.2c01256
  25. Bochkova Z.V., Semenova M.A., Smirnova O.M., Maksimov G.V., Rubin, A.B., Kirpichnikov M.P., Dolgikh D.A., Chertkova R.V., Brazhe N.A. // Int. J. Biol. Macromol. 2025. V. 318. P. 145040. https://doi.org/10.1016/j.ijbiomac.2025.145040
  26. Marley J., Lu M., Bracken C. J. // J. Biomol. NMR. 2001. V. 20. P. 71–75. https://doi.org/10.1023/a:1011254402785
  27. Britikov V.V., Bocharov E.V., Britikova E.V., Dergousova N.I., Kulikova O.G., Solovieva A.Y., Shipkov N.S., Varfolomeeva L.A., Tikhonova T.V., Timofeev V.I., Shtykova E.V., Altukhov D.A., Usanov S.A., Arseniev A.S., Rakitina T.V., Popov V.O. // Int. J. Mol. Sci. 2022. V. 23. P. 9969. https://doi.org/10.3390/ijms23179969
  28. Yang Y., Allemand F., Guca E., Vallone B., Delbecq S., Roumestand C. // Biomol. NMR Assign. 2015. V. 9. P. 153–156. https://doi.org/10.1007/s12104-014-9563-1
  29. Jeng W.-Y., Chen C.-Y., Chang H.-C., Chuang W.-J. // J. Bioenerg. Biomembr. 2002. V. 34. https://doi.org/10.1023/a:1022561924392
  30. Семенова М.А., Бочкова Ж.В., Смирнова О.М., Игнатова А.А., Паршина Е.Ю., Зиганшин Р.Х., Бочаров Э.В., Браже Н.А., Максимов Г.В., Кирпичников М.П., Долгих Д.А., Черткова Р.В. // Биоорг. химия. 2023. Т. 3. С. 319–330. https://doi.org/10.31857/S013234232303020X
  31. Pepelina T.Y., Chertkova R.V., Dolgikh D.A., Kirpichnikov M.P. // Russ. J. Bioorg. Chem. 2010. V 36. P. 90–96. https://doi.org/10.1134/s1068162010010097
  32. Chertkova R.V., Bryantseva T.V., Brazhe N.A., Revin V.V., Kudryashova K.S., Yusipovich A.I., Brazhe A.R., Rubin A.B., Dolgikh D.A., Kirpichnikov M.P., Maksimov G.V. // Crystals. 2021. V. 11. P. 973. https://doi.org/10.3390/cryst11080973
  33. Semenova M.A., Smirnova O.M., Ignatova A.A., Parshina E.Y., Maksimov G.V., Kirpichnikov M.P., Dolgikh D.A., Chertkova R.V. // Russ. J. Bioorg. Chem. 2023. V. 49. P. 1483–1488. https://doi.org/10.1134/S1068162023060274
  34. Semenova M.A., Bochkova Z.V., Smirnova O.M., Maksimov G.V., Kirpichnikov M.P., Dolgikh D.A., Brazhe N.A., Chertkova R.V. // Curr. Issues Mol. Biol. 2024. V. 46. P. 3364–3378. https://doi.org/10.3390/cimb46040211
  35. Guimaraes B.G., Hamdane D., Lechauve C., Marden M.C., Golinelli-Pimpaneau B. // Acta Crystallogr. D Biol. Crystallogr. 2014. V. 70. P. 1005–1014. https://doi.org/10.1107/S1399004714000078
  36. Kelly S.M., Jess T.J., Price N.C. // Biochim. Biophys. Acta. 2005. V. 1751. P. 119–139. https://doi.org/10.1016/j.bbapap.2005.06.005
  37. Sebastiani F., Milazzo L., Exertier C., Becucci M., Smulevich G. // J. Raman Spectrosc. 2021. V. 52. P. 2536–2549. https://doi.org/10.1002/jrs.6105
  38. Nagai M., Nagai Y., Aki Y., Sakurai H., Mizusawa N., Ogura T., Kitagawa T., Yamamoto Y., Nagatomo S. // Chirality. 2016. V. 28. P. 585–592. https://doi.org/10.1002/chir.22620
  39. Vallone B., Nienhaus K., Brunori M., Nienhaus G.U. // Proteins. 2004. V. 56. P. 85–92. https://doi.org/10.1002/prot.20113
  40. Du W., Syvitski R., Dewilde S., Moens L., La Mar G.N. // J. Am. Chem. Soc. 2003. V. 125. P. 8080–8081. https://doi.org/10.1021/ja034584r
  41. Pesce A., Dewilde S., Nardini M., Moens L., Ascenzi P., Hankeln T., Burmester T., Bolognes M. // Structure. 2003. V. 11. P. 1087–1095. https://doi.org/10.1016/s0969-2126(03)00166-7
  42. Geraci G., Parkhurst L.J. // Methods Enzymol. 1981. V. 76. P. 262–275. https://doi.org/10.1016/0076-6879(81)76127-5
  43. Sambrook J., Fritsch E.F., Maniatis T. // Molecular Cloning: a Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Press, 1989.
  44. Nicolis S., Monzani E., Ciaccio C., Ascenzi P., Moens L., Casella L. // Biochem. J. 2007. V. 407. P. 89–99. https://doi.org/10.1042/bj20070372
  45. Schagger H., Jagow G. // Anal. Biochem. 1987. V. 166. P. 368–379. https://doi.org/10.1016/0003-2697(87)90587-2
  46. Mirdita. M., Schütze K., Moriwaki Y., Heo L., Ovchinnikov S., Steinegger M. // Nature Methods. 2022. V. 19. P. 679–682. https://doi.org/10.1038/s41592-022-01488-1

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».