Влияние модификаций цитоскелетного белка зиксина на его внутриклеточное распределение на модели эмбрионов шпорцевой лягушки Xenopus laevis

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Зиксин – консервативный механочувствительный LIM-доменный белок, регулирующий сборку F-актиновых филаментов в клеточных контактах. В то же время в ответ на растяжение клеток зиксин может перемещаться в ядро и регулировать экспрессию генов. Это перемещение может регулироваться его посттрансляционными модификациями. Поскольку зиксин признан онкомаркером, изучение модификаций этого белка и механизмов его перемещения между ядром и цитоплазмой открывает возможности для диагностических исследований на молекулярном уровне. С использованием модельного организма, эмбрионов шпорцевой лягушки (Xenopus laevis) на стадии гаструлы, было показано влияние направленного мутагенеза по сайтам пальмитилирования, глюкозаминилирования, а также по N- и С-концевым аминокислотным остаткам на способность зиксина перемещаться в ядро. Показано, что направленный мутагенез сайтов возможного пальмитилирования приводит к уменьшению количества зиксина в ядре, а мутирование аминокислот, подвергающихся глюкозаминилированию, наоборот, приводит к увеличению количества зиксина в ядре. Также было показано, что добавление Flag-эпитопа на С-конец молекулы зиксина приводит к утрате его способность к перемещению в ядро. Полученные данные впервые, насколько нам известно, свидетельствуют о влиянии указанных модификаций на перемещение зиксина и дополняют мировые исследования о механизмах изменения локализации механочувствительных белков семейства зиксина. Помимо фундаментального значения, эти данные могут иметь перспективную ценность и для биомедицинских исследований, в особенности учитывая тот факт, что нарушение внутриклеточной локализации зиксин-подобных белков приводит к образованию раковых опухолей и заболеваний сердечно-сосудистой системы.

Полный текст

Доступ закрыт

Об авторах

Е. А. Паршина

ФГБУН ГНЦ “Институт биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова” РАН

Email: martnat61@gmail.com
Россия, 117997 Москва, ул. Миклухо-Маклая, 16/10

Э. И. Иванова

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова Минздрава России

Email: martnat61@gmail.com
Россия, 117997 Москва, ул. Островитянова, 1

А. Г. Зарайский

ФГБУН ГНЦ “Институт биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова” РАН

Email: martnat61@gmail.com
Россия, 117997 Москва, ул. Миклухо-Маклая, 16/10

Н. Ю. Мартынова

ФГБУН ГНЦ “Институт биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова” РАН

Автор, ответственный за переписку.
Email: martnat61@gmail.com
Россия, 117997 Москва, ул. Миклухо-Маклая, 16/10

Список литературы

  1. Nix D.A., Beckerle M.C. // J. Cell Biol. 1997. V. 138. P. 1139–1147. https://doi.org/10.1083/jcb.138.5.1139
  2. Cerisano V., Aalto Y., Perdichizzi S., Bernard G., Manara M.C., Benini S., Cenacchi G., Preda P., Lattanzi G., Nagy B., Knuutila S., Colombo M.P., Bernard A., Picci P., Scotlandi K. // Oncogene. 2004. V. 23. P. 5664–5674. https://doi.org/10.1038/sj.onc.1207741
  3. Ermolina L.V., Martynova N.Iu., Zaraĭskiĭ A.G. // Russ. J. Bioorg. Chem. 2010. V. 36. P. 24–31. https://doi.org/10.1134/s1068162010010036
  4. Martynova N.Y., Parshina E.A., Zaraisky A.G. // FEBS J. 2023. V. 290. P. 66–72. https://doi.org/10.1111/febs.16308
  5. Martynova N.Y., Ermolina L.V., Ermakova G.V., Eroshkin F.M., Gyoeva F.K., Baturina N.S., Zaraisky A.G. // Dev. Biol. 2013. V. 380. P. 37–48. https://doi.org/10.1016/j.ydbio.2013.05.005
  6. Wu Z., Wu D., Zhong Q., Zou X., Liu Z., Long H., Wei J., Li X., Dai F. // Front. Mol. Biosci. 2024. V. 11. P. 1371549. https://doi.org/10.3389/fmolb.2024.1371549
  7. Wang Y.X., Wang D.Y., Guo Y.C., Guo J. // Eur. Rev. Med. Pharmacol. Sci. 2019. V. 23. P. 413–425. https://doi.org/10.26355/eurrev_201901_16790
  8. Rauskolb C., Pan G., Reddy B.V., Oh H., Irvine K.D. // PLoS Biol. 2011. V. 9. P. e1000624. https://doi.org/10.1371/journal.pbio.1000624
  9. Suresh Babu S., Wojtowicz A., Freichel M., Birnbaumer L., Hecker M., Cattaruzza M. // Sci. Signal. 2012. V. 5. P. ra91. https://doi.org/10.1126/scisignal.2003173
  10. Beckerle M.C. // J. Cell Biol. 1986. V. 103. P. 1679– 1687. https://doi.org/10.1083/jcb.103.5.1679.
  11. Crawford A.W., Beckerle M.C. // J. Biol. Chem. 1991. V. 266. P. 5847–5853. https://doi.org/10.1083/jcb.119.6.1573
  12. Hirata H., Tatsumi H., Sokabe M.. // J. Cell Sci. 2008. V. 121. P. 2795–2804. https://doi.org/10.1242/jcs.030320
  13. Sadler I., Crawford A.W., Michelsen J.W., Beckerle M.C. // J. Cell Biol. 1992. V. 119. P. 1573–1587. https://doi.org/10.1083/jcb.119.6.1573
  14. Pérez-Alvarado G.C., Miles C., Michelsen J.W., Louis H.A., Winge D.R., Beckerle M.C., Summers M.F. // Nat. Struct. Biol. 1994. V. 1. P. 388–398. https://doi.org/10.1038/nsb0694-388
  15. Schmeichel K.L., Beckerle M.C. // Cell. 1994. V. 79. P. 211–219. https://doi.org/10.1016/0092-8674(94)90191-0
  16. Schmeichel K.L., Beckerle M.C. // Biochem. J. 1998. V. 331. P. 885–892. https://doi.org/10.1042/bj3310885
  17. Beckerle M.C. // Bioessays. 1997. V. 19. P. 949–957. https://doi.org/10.1002/bies.950191104.
  18. Kadrmas J.L., Beckerle M.C. // Nat. Rev. Mol. Cell Biol. 2004. V. 5. P. 920–931. https://doi.org/10.1038/nrm1499
  19. Steele A.N., Sumida G.M., Yamada S. // Biochem. Biophys. Res. Commun. 2012. V. 422. P. 653–657. https://doi.org/10.1016/j.bbrc.2012.05.046
  20. Burridge K., Wittchen E.S. // J. Cell Biol. 2013. V. 200. P. 9–19. https://doi.org/10.1083/jcb.201210090
  21. Mori M., Nakagami H., Koibuchi N., Miura K., Takami Y., Koriyama H., Hayashi H., Sabe H., Mochizuki N., Morishita R., Kaneda Y. // Mol. Biol. Cell. 2009. V. 20. P. 3115–3124. https://doi.org/10.1091/mbc.e09-01-0046
  22. Call G.S., Chung J.Y., Davis J.A., Price B.D., Primavera T.S., Thomson N.C., Wagner M.V., Hansen M.D. // Biochem. Biophys. Res. Commun. 2011. V. 404. P. 780–784. https://doi.org/10.1016/j.bbrc.2010.12.058
  23. Moody J.D., Grange J., Ascione M.P., Boothe D., Bushnell E., Hansen M.D. // Biochem. Biophys. Res. Commun. 2009. V. 378. P. 625–628. https://doi.org/10.1016/j.bbrc.2008.11.100
  24. Fujita Y., Yamaguchi A., Hata K., Endo M., Yamaguchi N., Yamashita T. // BMC Cell Biol. 2009. V. 10. P. 6. https://doi.org/10.1186/1471-2121-10-6
  25. Zhao Y., Yue S., Zhou X., Guo J., Ma S., Chen Q. // J. Biol. Chem. 2022. V. 298. P. 101776. https://doi.org/10.1016/j.jbc.2022.101776
  26. Oku S., Takahashi N., Fukata Y., Fukata M. // J. Biol. Chem. 2013. V. 288. P. 19816–19829. https://doi.org/10.1074/jbc.M112.431676
  27. Ivanova E.D., Parshina E.A., Zaraisky A.G., Martynova N.Y. // Russ. J. Bioorg. Chem. 2024. V. 50. P. 723–732. https://doi.org/10.1134/s1068162024030026
  28. Sabino F., Madzharova E., Auf dem Keller U. // Cell Death Dis. 2020. V. 11. P. 674. https://doi.org/10.1038/s41419-020-02883-2
  29. Martynova N.Y., Eroshkin F.M., Ermolina L.V., Ermakova G.V., Korotaeva A.L., Smurova K.M., Gyoeva F.K., Zaraisky A.G. // Dev. Dyn. 2008. V. 237. P. 736–749. https://doi.org/10.1002/dvdy.21471
  30. Martynova N.Y., Parshina E.A., Zaraisky A.G. // STAR Protoc. 2021. V. 2. P. 100449. https://doi.org/10.1016/j.xpro.2021.100449
  31. Linder M.E., Deschenes R.J. // Nat. Rev. Mol. Cell Biol. 2007. V. 8. P. 74–84. https://doi.org/10.1038/nrm2084
  32. el-Husseini Ael-D, Bredt D.S. // Nat. Rev. Neurosci. 2002. V. 3. P. 791–802. https://doi.org/10.1038/nrn940
  33. Fukata Y., Fukata M. // Nat. Rev. Neurosci. 2010. V. 11. P. 161–175. https://doi.org/10.1038/nrn2788.
  34. Zachara N.E., Hart G.W. // Biochim. Biophys. Acta. 2004. V. 1673. P. 13–28. https://doi.org/10.1016/j.bbagen.2004.03.016
  35. Xu Z., Isaji T., Fukuda T., Wang Y., Gu J. // J. Biol. Chem. 2019. V. 294. P. 3117–3124. https://doi.org/10.1074/jbc.RA118.005923

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Участки для направленного мутагенеза зиксина и схемы мутантных белков. (а) – Cравнение аминокислотных последовательностей гомологов зиксина из лягушки (xenZYX), курицы (galZYX) и человека (homZYX) показало высокий консерватизм в пролин-богатой и LIM-доменной областях (области, выделенные черным). На схеме приведены позиции, подвергавшиеся мутагенезу; (б) – схемы тагированных Myc (1–3) и Flag (1) эпитопами и мутированных по сайтам пальмитилирования (3), глюкозаминилирования (4) и укороченной (5) версий зиксина.

Скачать (1008KB)
3. Рис. 2. Внутриклеточное распределение гибридных по N- и С-концевым доменам форм зиксина. (а) – Cхема эксперимента; (б) – наличие Flag-пептида на С-конце препятствует его перемещению в ядро. Сверху – схема гибридного зиксина, ниже представлены вестерн-блоты с детекцией антителами анти-Мyc (блот сверху) и анти-Flag (блот снизу), по две дорожки на каждую пробу; (в) – удаление Flag-пептида с С-конца молекулы зиксина восстанавливает его способность к перемещению в ядро. Сверху – схема гибридного белка, снизу – вестерн-блот с детекцией антителами анти-Myc, по две дорожки на пробу.

Скачать (711KB)
4. Рис. 3. Анализ распределения зиксина, мутантного по сайтам пальмитилирования, O-глюкозаминилирования и делеционного мутанта в клетках эмбрионов на стадии гаструлы. (а) – Мутации полноразмерного Мyc-зиксина по сайтам пальмитилирования приводит к уменьшению зиксина в ядре. Сверху – схема мутантного зиксина, Cys531, 532, 555, 558 и 593 заменены на аланины. Слева – вестерн-блот с детекцией анти-Мус-антителами, референсная полоса нагрузки на дорожку – актин. Справа – проверка статистической достоверности изменения количества зиксина, усл. ед. (* р < 0.05); (б) – мутации полноразмерного зиксина по аминокислотам, подвергающимся O-глюкозаминилированию, приводит к уменьшению количества зиксина в ядре. Сверху – схема мутантного зиксина, Ser216 и 217 заменены на аланины. Слева – вестерн-блот, детекция антителами к С-зиксину, референсная полоса нагрузки на дорожку – актин. Справа – проверка статистической достоверности изменения количества зиксина, усл. ед. (* р < 0.05); (в) – анализ распределения между ядром и цитоплазмой укороченной формы зиксина (334–664 а.о.). Сверху – схема делеционного мутанта зиксина, ∆зиксина (334–664 а.о.). Слева – вестерн-блот, детекция антителами к С-зиксину. Справа – проверка статистической достоверности изменения количества зиксина, усл. ед. (* р < 0.05).

Скачать (988KB)

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».