State of the Retina and Optic Nerve in 21-Day Head-Down Tilt Bed Rest

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Studies in conditions of head-down tilt bed rest are widely used experiments which imitate redistribution of body fluids similar to the redistribution of fluid media in microgravity. To study the mechanism of development of spaceflight-associated neuro-ocular syndrome (SANS) in head-down tilt bed rest studies scientists have evaluated, among other things, participants’ visual system parameters. The main symptom of SANS is an edema of an optic disc and a retina. To date, the results describing the influence of head-down tilt bed rest on the visual system are ambiguous, which determines the relevance of further research. The aim of the study is to analyze retinal morphometry in the optic disc area and macular area in participants before and after 21-day head-down tilt bed rest. The study was performed using an optical coherence tomography with angiography function (Optovue RTVue XR Avanti System) before and after 21-days of head-down tilt bed rest. In 4 participants (8 eyes) (men, mean age ± standard deviation: 29.3 ± 3.9 years) the macular zone and optic disc area were evaluated according to standard scanning modes. To analyze the values obtained, we used mean tendency scores, mean comparison criteria, and graphical analysis. The results of the retinal thickness in the optic disc zone were consistent with those of other researchers, indicating a possible increase in retinal thickness, but our results did not reach the level of statistical significance. A statistically significant thickening of the retina in the macular zone was shown for the first time, but the increase is significantly less in amplitude than the thickening of the nerve fiber layer in the optic disc zone. Analysis of vascular density under head-down tilt bed rest conditions was performed for the first time both for the optic disc zone and the macula zone, but additional studies are required to obtain steady conclusions. For the first time, an increase in retinal thickness in the macula zone in participants of head-down tilt bed rest experiments was shown; for the optic disc zone, data consistent with the results of other researchers were obtained. For the first time, angiographic data were obtained for the macula and optic disk areas, but the obtained differences in vascular density did not reach the level of statistical significance.

作者简介

M. Gracheva

Institute of Biomedical Problems of the RAS; Institute for Information Transmission Problems (Kharkevich Institute), RAS

编辑信件的主要联系方式.
Email: mg.iitp@gmail.com
Russia, Moscow; Russia, Moscow

A. Kazakova

Institute of Biomedical Problems of the RAS; Institute for Information Transmission Problems (Kharkevich Institute), RAS

Email: mg.iitp@gmail.com
Russia, Moscow; Russia, Moscow

O. Manko

Institute of Biomedical Problems of the RAS

Email: mg.iitp@gmail.com
Russia, Moscow

参考

  1. Mader T.H., Gibson C.R., Pass A.F. et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight // Ophthalmology. 2011. V. 118. № 10. P. 2058.
  2. Space Physiology and Medicine: From Evidence to Practice / Eds. Nicogossian A.E., Huntoon C.L., Polk J.D., Williams R.S., Doarn C.R., Schneider V.S. New York: Springer, 2016. 509 p.
  3. Stenger M.B., Laurie S.S., Sadda S.R. et al. Focus on the optic nerve head in spaceflight-associated neuro-ocular syndrome // Ophthalmology. 2019. V. 126. № 12. P. 1604.
  4. Lee A.G., Mader T.H., Gibson C.R. et al. Space flight-associated neuro-ocular syndrome (SANS) // Eye. 2018. V. 32. № 7. P. 1164.
  5. Lee A.G., Mader T.H., Gibson C.R. et al. Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: a review and an update // NPJ Microgravity. 2020. V. 6. № 1. P. 7.
  6. Wojcik P., Batliwala S., Rowsey T. et al. Spaceflight-Associated Neuro-ocular Syndrome (SANS): a review of proposed mechanisms and analogs // Expert Rev. Ophthalmol. 2020. V. 15. № 4. P. 249.
  7. Журавлева О.А., Маркин А.А., Кузичкин Д.С. и др. Динамика маркеров окислительного стресса при длительной антиортостатической гипокинезии // Физиология человека. 2016. Т. 42. № 1. С. 94. Juravlyova O.A., Markin A.A., Kuzichkin D.S. et al. Dynamics of oxidation stress markers during long-term antiorthostatic hypokinesia: A retrospective study // Human Physiology. 2016. V. 42. № 1. P. 79.
  8. Саенко И.В., Саенко Д.Г., Козловская И.Б. Влияние 120-суточной антиортостатической гипокинезии на характеристики сухожильных рефлексов // Авиакосм. и эколог. мед. 2000. Т. 34. № 4. С. 13. Saenko I.V., Saenko D.G., Kozlovskaya I.B. [The effect of 120-d head-down tilt (HDT) on the characteristics of tendinous reflexes] // Aviakosm. Ekolog. Med. 2000. V. 34. № 4. P. 13.
  9. Вейн А.М., Пономарева И.П., Елигулашвили Т.С. и др. Цикл “сон–бодрствование” в условиях антиортостатической гипокинезии // Авиакосм. и эколог. мед. 1997. Т. 31. № 1. С. 47. Vejn A.M., Ponomareva I.P., Eligulashvili T.S. et al. [The wakefulness-sleep cycle during antiorthostatic hypokinesia] // Aviakosm. Ekolog. Med. 1997. V. 31. № 1. P. 47.
  10. Thomsen J.S., Morukov B.V., Vico L. et al. Cancellous bone structure of iliac crest biopsies following 370 days of head-down bed rest // Aviat. Space Environ. Med. 2005. V. 76. № 10. P. 915.
  11. Иванова С.М., Моруков Б.В., Ярлыкова Ю.В. и др. Состояние системы красной крови у мужчин при длительной антиортостатической гипокинезии // Авиакосм. и эколог. мед. 2005. Т. 39. № 6. С. 17. Ivanova S.M., Morukov B.V., Yarlykova Yu.V. et al. [The red blood system in men during long-term head-down bed rest] // Aviakosm. Ekolog. Med. 2005. V. 39. № 6. P. 17.
  12. Саенко Д.Г., Саенко И.В., Шестаков М.П. и др. Влияние 120-суточной антиортостатической гипокинезии на состояние систем позного регулирования человека // Авиакосм. и эколог. мед. 2000. Т. 34. № 5. С. 6. Saenko D.G., Saenko I.V., Shestakov M.P. et al. [The effect of 120-d head-down bedrest on the system of posture regulation in human] // Aviakosm. Ekolog. Med. 2000. V. 34. № 5. P. 6.
  13. Pavy-Le Traon A., Heer M., Narici M.V. et al. From space to Earth: advances in human physiology from 20 years of bed rest studies (1986–2006) // Eur. J. Appl. Physiol. 2007. V. 101. № 2. P. 143.
  14. Meck J.V., Dreyer S.A., Warren L.E. Long-duration head-down bed rest: project overview, vital signs, and fluid balance // Aviat. Space Environ. Med. 2009. V. 80. № 5. P. A01.
  15. Hargens A.R, Vico L. Long-duration bed rest as an analog to microgravity // J. Appl. Physiol. 2016. V. 120. № 8. P. 891.
  16. Taibbi G., Cromwell R.L., Kapoor K.G. et al. The effect of microgravity on ocular structures and visual function: a review // Surv. Ophthalmol. 2013. V. 58. № 2. P. 155.
  17. Laurie S.S., Macias B.R., Dunn J.T. et al. Optic disc edema after 30 days of strict head-down tilt bed rest // Ophthalmology. 2019. V. 126. № 3. P. 467.
  18. Laurie S.S., Lee S.M., Macias B.R. et al. Optic disc edema and choroidal engorgement in astronauts during spaceflight and individuals exposed to bed rest // JAMA Ophthalmol. 2020. V. 138. № 2. P. 165.
  19. Laurie S.S., Greenwald S.H., Pardon G.L. P. et al. Optic disc edema and chorioretinal folds develop during strict 6° head-down tilt bed rest with or without artificial gravity // Physiol. Rep. 2021. T. 9. № 15. P. e14977.
  20. Sater S.H., Natividad G.C., Seiner A.J. et al. MRI-based quantification of posterior ocular globe flattening during 60 days of strict 6° head-down tilt bed rest with and without daily centrifugation // J. Appl. Physiol. 2022. V. 133. № 6. P. 1349.
  21. Zhang L.F., Hargens A.R. Spaceflight-induced intracranial hypertension and visual impairment: pathophysiology and countermeasures // Physiol Rev. 2018. V. 98. № 1. P. 59.
  22. Hofman P., Hoyng P., Vrensen G.F., Schlingemann R.O. Lack of blood-brain barrier properties in micro vessels of the preliminar optic nerve head // Invest. Ophthal. Vis. Sci. 2001. V. 42. № 5. P. 895.
  23. Kramer L.A., Sargsyan A.E., Hasan K.M. et al. Orbital and intracranial effects of microgravity: findings at 3-T MR imaging // Radiology. 2012. V. 263. № 3. P. 819.
  24. Taibbi G., Cromwell R.L., Zanello S.B. et al. Ocular outcomes comparison between 14-and 70-day head-down-tilt bed rest // Invest. Ophthal. Vis. Sci. 2016. V. 57. № 2. P. 495.
  25. Pardon L.P., Greenwald S.H., Ferguson C.R. et al. Identification of Factors Associated With the Development of Optic Disc Edema During Spaceflight // JAMA Ophthalmol. 2022. V. 140. № 12. P. 1193.
  26. Sibony P.A., Laurie S.S., Ferguson C.R. et al. Ocular Deformations in Spaceflight-Associated Neuro-Ocular Syndrome and Idiopathic Intracranial Hypertension // Invest. Ophthal. Vis. Sci. 2023. V. 64. № 3. P. 32.
  27. Miller N.R., Walsh F.B., Hoyt W.F. Walsh and Hoyt’s clinical neuro-ophthalmology. Philadelphia, PA: Lippincott Williams & Wilkins, 2005. V. 1. 1402 p.
  28. Patel N., Pas A., Mason S. et al. Optical coherence tomography analysis of the optic nerve head and surrounding structures in long-duration international space station astronauts // JAMA Ophthalmol. 2018. V. 136. № 2. P. 193.
  29. Shinojima A., Iwasaki K.I., Aoki K. et al. Subfoveal choroidal thickness and foveal retinal thickness during head-down tilt // Aviat. Space Environ. Med. 2012. V. 83. № 4. P. 388.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (108KB)
3.

下载 (356KB)
4.

下载 (366KB)
5.

下载 (401KB)
6.

下载 (390KB)
7.

下载 (402KB)

版权所有 © М.А. Грачева, А.А. Казакова, О.М. Манько, 2023

##common.cookie##