The Functional State of Emotion-Motivational Brain Regulatory Systems and Risk-Taking Propensity in Adolescents

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The aim of this study was to identify relationships between the functional state of the different brain regulatory systems (BRS), voluntary control and emotional-motivational regulation in adolescents (n = 95, age ~13.96 ± 1.13, girls 34%). We also analyzed the relationship between individual characteristics of emotional-motivational regulation and risk-taking tendencies in separated groups with specific EEG signs of suboptimal functional state of the BRS. Five tests were performed: 1) assessment of individual traits of achievement motivation vs. failure avoidance using the Mehrabian Questionnaire (TMD), 2) emotional intelligence (EI) using the MSCEIT 2.0, 3) assessment of propensity to risky decision-making by monetary computer game Baloon Analog Risk Task. On the basis of a qualitative analysis of the EEG, 4) the participants were classified into groups showing evidence of suboptimal functioning of the frontothalamic (FTS), limbic (LMB), frontobasal (FBZ) and to control group in the case of absence of specific signes. All groups, except control, showed a decrease in the EI scale, which associate sensations with emotions. A specific decrease in EI indicators was found in experimental groups in comparison with the control group: FTS – on the scale of understanding blended emotions; LMB — on the scale of facilitation of cognitive activity by emotions; FBZ group — on a scale reflecting the ability to manage one’s own emotions. The indicators of the Mehrabian questionnaire showed propensity towards achievement motivation in the LMB. Correlations between EI, achievement motivation and risk-taking: in FTS, LMB a positive correlation of the risk-taking with the scale associate sensations with emotions. For LMB there is also a positive correlation between risk-taking, understanding and management of emotions. The results are discussed in terms of the influence of the suboptimal state of brain regulatory systems on the emotional and motivational regulation in adolescents.

作者简介

D. Lomakin

Institute of Developmental Physiology, RAE

编辑信件的主要联系方式.
Email: lomakindima4@gmail.com
Russia, Moscow

参考

  1. Massey E.K., Gebhardt W.A., Garnefski N. Adolescent goal content and pursuit: A review of the literature from the past 16 years // Dev. Rev. 2008. V. 28. № 4. P. 421.
  2. Blakemore S.J., Mills K.L. Is adolescence a sensitive period for sociocultural processing? // Annu Rev. Psychol. 2014. V. 65. P. 187.
  3. Kim-Spoon J., Deater-Deckard K., Calkins S.D. et al. Commonality between executive functioning and effortful control related to adjustment // J. Appl. Dev. Psychol. 2019. V. 60. P. 47.
  4. Paus T. Mapping brain maturation and cognitive development during adolescence // Trends Cogn. Sci. 2005. V. 9. № 2. P. 60.
  5. Gladwin T.E., Figner B. “Hot” cognition and dual systems: Introduction, criticisms, and ways forward / Frontiers of cognitive psychology series: Neuroeconomics, judgment and decision making. New York: Psychological Press, 2014. P. 157.
  6. Mateos-Aparicio P., Rodríguez-Moreno A. The impact of studying brain plasticity // Front. Cell. Neurosci. 2019. V. 13. P. 66.
  7. Spear L.P. The adolescent brain and age-related behavioral manifestations // Neurosci. Biobehav. Rev. 2000. V. 24. № 4. P. 417.
  8. Iacono L.L., Carola V. The impact of adolescent stress experiences on neurobiological development // Semin. Cell Dev. Biol. 2018. V. 77. P. 93.
  9. Moffitt T.E. Natural histories of delinquency / Cross-national longitudinal research on human development and criminal behavior. Springer, 1994. P. 3.
  10. Pandya D., Petrides M., Cipolloni P.B. Cerebral cortex: architecture, connections, and the dual origin concept. Oxford University Press, 2015. 481 p.
  11. Sundram F., Deeley Q., Sarkar S. et al. White matter microstructural abnormalities in the frontal lobe of adults with antisocial personality disorder // Cortex. 2012. V. 48. № 2. P. 216.
  12. de Oliveira-Souza R., Hare R.D., Bramati I.E. et al. Psychopathy as a disorder of the moral brain: fronto-temporo-limbic grey matter reductions demonstrated by voxel-based morphometry // Neuroimage. 2008. V. 40. № 3. P. 1202.
  13. Мачинская Р. Управляющие системы мозга // Журн. высш. нервн. деят. им. И.П. Павлова. 2015. Т. 65. № 1. С. 33. Machinskaya R. [The brain executive systems] // Zh. Vyssh. Nerv. Deiat. Im. I.P. Pavlova. 2015. V. 65. № 1. P. 33.
  14. Barbas H., Zikopoulos B., Timbie C. Sensory pathways and emotional context for action in primate prefrontal cortex // Biol. Psychiatry. 2011. V. 69. № 12. P. 1133.
  15. Lee S., Shin H.-S. The role of mediodorsal thalamic nucleus in fear extinction // J. Analytical Science and Technology. 2016. V. 7. № 1. P. 13.
  16. Cho Y.T., Fromm S., Guyer A.E. et al. Nucleus accumbens, thalamus and insula connectivity during incentive anticipation in typical adults and adolescents // Neuroimage. 2013. V. 66. P. 508.
  17. Christakou A., Brammer M., Rubia K. Maturation of limbic corticostriatal activation and connectivity associated with developmental changes in temporal discounting // Neuroimage. 2011. V. 54. № 2. P. 1344.
  18. Krueger F., Barbey A.K., McCabe K. et al. The neural bases of key competencies of emotional intelligence // Proc. Natl. Acad. Sci. U.S.A. 2009. V. 106. № 52. P. 22486.
  19. Leisman G., Braun-Benjamin O., Melillo R. Cognitive-motor interactions of the basal ganglia in development // Front. Syst. Neurosci. 2014. V. 8. P. 16.
  20. Hikosaka O., Kim H.F., Yasuda M., Yamamoto S. Basal ganglia circuits for reward value-guided behavior // Annu. Rev. Neurosci. 2014. V. 37. P. 289.
  21. Balleine B.W., Delgado M.R., Hikosaka O. The role of the dorsal striatum in reward and decision-making // J. Neurosci. 2007. V. 27. № 31. P. 8161.
  22. Oldham S., Murawski C., Fornito A. et al. The anticipation and outcome phases of reward and loss processing: A neuroimaging meta-analysis of the monetary incentive delay task // Hum. Brain Mapp. 2018. V. 39. № 8. P. 3398.
  23. Graybiel A.M. Habits, rituals, and the evaluative brain // Annu. Rev. Neurosci. 2008. V. 31. P. 359.
  24. Sanders K., Jorgensen F., Shipton H. et al. Performance-based rewards and innovative behaviors // Hum. Resour. Manage. 2018. V. 57. № 6. P. 1455.
  25. Ernst M., Nelson E.E., Jazbec S. et al. Amygdala and nucleus accumbens in responses to receipt and omission of gains in adults and adolescents // Neuroimage. 2005. V. 25. № 4. P. 1279.
  26. Schmidt L., d’Arc B.F., Lafargue G. et al. Disconnecting force from money: effects of basal ganglia damage on incentive motivation // Brain. 2008. V. 131. № 5. P. 1303.
  27. Ory S., Le Jeune F., Haegelen C. et al. Pre-frontal-insular-cerebellar modifications correlate with disgust feeling blunting after subthalamic stimulation: A positron emission tomography study in P arkinson’s disease // J. Neuropsychol. 2017. V. 11. № 3. P. 378.
  28. Arnsten A.F., Rubia K. Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders // J. Am. Acad. Child Adolesc. Psychiatry. 2012. V. 51. № 4. P. 356.
  29. Marsh A.A., Finger E.C., Mitchell D.G. et al. Reduced amygdala response to fearful expressions in children and adolescents with callous-unemotional traits and disruptive behavior disorders // Am. J. Psychiatry. 2008. V. 165. № 6. P. 712.
  30. Casey B.J. Beyond simple models of self-control to circuit-based accounts of adolescent behavior // Annu. Rev. Psychol. 2015. V. 66. P. 295.
  31. Uematsu A., Matsui M., Tanaka C. et al. Developmental trajectories of amygdala and hippocampus from infancy to early adulthood in healthy individuals // PLoS One. 2012. V. 7. № 10. P. e46970.
  32. Wierenga L.M., Langen M., Oranje B., Durston S. Unique developmental trajectories of cortical thickness and surface area // Neuroimage. 2014. V. 87. P. 120.
  33. Мачинская Р., Захарова М., Ломакин Д. Регуляторные системы мозга у подростков с признаками девиантного поведения. Междисциплинарный анализ // Физиология человека. 2020. Т. 46. № 3. С. 37. Machinskaya R., Zakharova M., Lomakin D. Brain Regulatory Functions in Adolescents with Signs of Deviant Behavior. An Interdisciplinary Analysis // Human Physiology. 2020. V. 46. № 3. P. 264.
  34. Корнеев А.А., Захарова М.Н., Курганский А.В. и др. Прогностическое значение электроэнцефалографических и нейропсихологических показателей состояния регуляторных функций мозга для оценки вероятности отклонений поведения у подростков // Экспериментальная психология. 2021. Т. 14. № 1. С. 135. Korneev A.A., Zakharova M., Kurgansky A.V. et al. Prognostic value of electroencephalographic and neuropsychological indicators of the state of regulatory functions of the brain to assess the likelihood of behavioral abnormalities in adolescents // Experimental Psychology (Russia). 2021. V. 14. № 1. P. 135.
  35. Ломакин Д., Корнеев А., Курганский А., Мачинская Р. Склонность к риску и девиантное поведение у подростков // Российский журн. когнитивной науки. 2018. Т. 5. № 4. С. 4. Lomakin D.I., Korneev A.A., Kurgansky A.V., Machinskaya R.I. Risk-taking and deviant behavior in adolescents // Russ. J. Cogn. Sci. 2018. V. 5. № 4. P. 4.
  36. Мачинская Р., Курганский А., Ломакин Д. Возрастные изменения функциональной организации корковых звеньев регуляторных систем мозга у подростков. Анализ нейронных сетей покоя в пространстве источников ЭЭГ // Физиология человека. 2019. Т. 45. № 5. С. 5. Machinskaya R., Kurgansky A., Lomakin D. Age-related trends in functional organization of cortical parts of regulatory brain systems in adolescents: an analysis of resting-state networks in the EEG source space // Human Physiology. 2019. V. 45. № 5. P. 461.
  37. Сергиенко Е., Ветрова И. Эмоциональный интеллект: русскоязычная адаптация теста Мэйера–Сэловея–Карузо (MSCEIT V2.0) // Психологические исследования. 2009. № 6 (8). С. 2.
  38. Cyders M.A., Smith G.T. Emotion-based dispositions to rash action: positive and negative urgency // Psychol. Bull. 2008. V. 134. № 6. P. 807.
  39. Mayer J.D., Salovey P., Caruso D.R., Sitarenios G. Measuring emotional intelligence with the MSCEIT V2. 0 // Emotion. 2003. V. 3. № 1. P. 97.
  40. Pleskac T., Wallsten T., Wang P., Lejuez C. Development of an automatic response mode to improve the clinical utility of sequential risk-taking tasks // Exp. Clin. Psychopharmacol. 2008. V. 16. № 6. P. 555.
  41. Bornovalova M.A., Cashman-Rolls A., O’Donnell J.M. et al. Risk taking differences on a behavioral task as a function of potential reward/loss magnitude and individual differences in impulsivity and sensation seeking // Pharmacol. Biochem. Behav. 2009. V. 93. № 3. P. 258.
  42. Фетискин Н., Козлов В., Мануйлов Г. Социально-психологическая диагностика развития личности и малых групп: учебное пособие. М.: Издательство института психотерапии, 2009. 544 с.
  43. Mehrabian A. Male and female scales of the tendency to achieve // Educ. Psychol. Measur. 1968. V. 28. № 2. P. 493.
  44. Rime B., Philippot P., Cisamolo D. Social schemata of peripheral changes in emotion // J. Pers. Soc. Psychol. 1990. V. 59. № 1. P. 38.
  45. Nummenmaa L., Glerean E., Hari R., Hietanen J.K. Bodily maps of emotions // Proc. Natl. Acad. Sci. U.S.A. 2014. V. 111. № 2. P. 646.
  46. Somerville L.H., Jones R.M., Casey B. A time of change: behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues // Brain Cogn. 2010. V. 72. № 1. P. 124.
  47. Plutchik R. Emotions and psychotherapy: A psychoevolutionary perspective / Emotion: Theory, research and experience // Eds. Plutchik R., Kellerman H. Academic Press, USA, 1990. V. 5. P. 3.
  48. Мачинская Р., Сугробова Г., Семенова О. Междисциплинарный подход к анализу мозговых механизмов трудностей обучения у детей. Опыт исследования детей с признаками СДВГ // Журн. высш. нерв. деят. им. И.П. Павлова. 2013. Т. 63. № 5. С. 542. Machinskaya R., Sugrobova G., Semenova O. An interdisciplinary approach to analysis of the cerebral mechanisms of learning difficulties in children. Experience of studies of children with signs of ADHD // Neurosci. Behav. Physiol. 2015. V. 45. № 5. P. 58.
  49. Brackett M.A., Rivers S.E., Shiffman S. et al. Relating emotional abilities to social functioning: a comparison of self-report and performance measures of emotional intelligence // J. Pers. Soc. Psychol. 2006. V. 91. № 4. P. 780.
  50. Ouhaz Z., Fleming H., Mitchell A.S. Cognitive functions and neurodevelopmental disorders involving the prefrontal cortex and mediodorsal thalamus // Front. Neurosci. 2018. V. 12. P. 33.
  51. Alves H., Koch A., Unkelbach C. Why good is more alike than bad: Processing implications // Trends Cogn. Sci. 2017. V. 21. № 2. P. 69.
  52. Operskalski J.T., Paul E.J., Colom R. et al. Lesion mapping the four-factor structure of emotional intelligence // Front. Hum. Neurosci. 2015. V. 9. P. 649.
  53. Anticevic A., Van Snellenberg J.X., Cohen R.E. et al. Amygdala recruitment in schizophrenia in response to aversive emotional material: a meta-analysis of neuroimaging studies // Schizophr. Bull. 2012. V. 38. № 3. P. 608.
  54. Ernst M., Fudge J.L. A developmental neurobiological model of motivated behavior: anatomy, connectivity and ontogeny of the triadic nodes // Neurosci. Biobehav. Rev. 2009. V. 33. № 3. P. 367.
  55. Krepel N., van Dijk H., Sack A.T. et al. To spindle or not to spindle: A replication study into spindling excessive beta as a transdiagnostic EEG feature associated with impulse control // Biol. Psychol. 2021. V. 165. P. 108188.
  56. Pierce J.E., Péron J. The basal ganglia and the cerebellum in human emotion // Soc. Cogn. Affect. Neurosci. 2020. V. 15. № 5. P. 599.
  57. Killgore W.D., Smith R., Olson E.A. et al. Emotional intelligence is associated with connectivity within and between resting state networks // Soc. Cogn. Affect. Neurosci. 2017. V. 12. № 10. P. 1624.

版权所有 © Д.И. Ломакин, 2023

##common.cookie##