The influence of Mozart’s sonata K448 on the change in the characteristic EEG pattern of internet addicts

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A study was conducted to identify the therapeutic effect of Mozart’s sonata K448 on changing the characteristic electroencephalogram (EEG) pattern of Internet-dependent individuals. The research was conducted with the participation of 35 Internet-addicted young people aged 18 to 25 years (20 girls and 15 boys). All the subjects were right-handed without special musical education. The participants of the experiment listened to Mozart’s sonata on a voluntary basis for 60 days. EEG recording was performed on the 30th and 60th days of the experiment using the Encephalan-131-03 electroencephalograph. The results of the research showed that when listening to Mozart’s sonata for 60 days, Internet-dependent individuals experience an increase in the spectral power of α-waves and a decrease in β- and θ-oscillations, as well as a shift in the asymmetry profile to the left hemisphere. The data obtained indicate a change in cortical-subcortical relationships in Internet-dependent individuals during music therapy by restoring inhibitory control from the prefrontal cortex and reducing the activity of thalamic structures.

Sobre autores

A. Rabadanova

Dagestan State University

Email: phisiodgu@mail.ru
Makhachkala, Russia

Z. Taygibova

Novocherkassk Medical College

Autor responsável pela correspondência
Email: phisiodgu@mail.ru
Novocherkassk, Russia

Bibliografia

  1. Petrov А.А., Сhernyak N.B. [Dependence on computer online games as a subtype of internet addiction (literature review)] // Sib. Herald Psychiatr. Addict. Psychiatr. 2017. № 4 (97). P. 82.
  2. Chukhrova M.G., Leutin V.P. [Addiction: Dependent behavior]. Novosibirsk: Publishing house of NGPU, 2010. 251 p.
  3. Gonzalez-Bueso V., Santamaría J.J., Fernández D. et al. Internet gaming disorder in adolescents: Personality, psychopathology and evaluation of a psychological intervention combined with parent psychoeducation // Front. Psychol. 2018. V. 9. P. 787.
  4. Kibitov A.O., Solovyova M.G., Brodyansky V.M. et al. [A pilot study of genetic risk markers of Internet addiction: The role of the brain-derived neurotrophic factor (BDNF) and dopamine receptor D4 (DRD4) genes] // J. Addict. Probl. 2019. № 6 (177). Р. 27.
  5. Nevidimova T.I., Savochkina D.N., Masterova E.I., Bohan N.A. [Results and prospects of research of interaction between sensory and immune systems in addictive disorders] // Sib. Herald Psychiatr. Addict. Psychiatr. 2018. № 2 (99). Р. 56.
  6. Soldatkin V.A., Mavani D.Ch., Karpova E.V. et al. [Clinical pathogenetic characteristics of computer addiction] // Medical Herald of the South of Russia. 2019. V. 10. № 2. Р. 35.
  7. Egorov A.Y. [Nonchemical addictions – are these “fake diagnoses” or still disorders?] // Neurol. Bull. 2019. V. 51. № 1. Р. 38.
  8. Egorov A.Y. [Non-chemical (behavioral) addictions typology, diagnosis and classification] // J. Addict. Probl. 2020. № 4 (187). Р. 7.
  9. Soldatkin V.A., Sidorov A.A., Mavani D.Ch., Dyachen-ko A.V. [Internet addiction: Gambling vs gaming. Literature review] // J. Addict. Probl. 2020. № 4 (187). Р. 113.
  10. Grant J.E., Schreiber L.R., Odlaug B.L. Pheno-menology and treatment of behavioural addictions // Can. J. Psychiatry. 2013. V. 58. № 5. Р. 252.
  11. Najavits L.I., Lung J., Froias A. et al. A study of multiple behavioral addictions in a substance abuse sample // Subst. Use Misuse. 2014. V. 49. № 4. P. 479.
  12. Ben-Yehuda L., Greenberg L., Weinstein A. Internet addiction by using the smartphone-relationships between internet addiction, frequency of smartphone use and the state of mind of male and female students // J. Reward Defic. Syndr. Addict. Sci. 2016. V. 2. № 1. P. 22.
  13. Kibitov A.O., Trusova A.V., Egorov A.Yu. [Internet addiction: clinical, biological, genetic and psychological aspects] // J. Addict. Probl. 2019. № 3. Р. 22.
  14. Ioannidis K., Redden S.A., Valle S. et al. Problematic internet use: An exploration of associations between cognition and COMT rs4818, rs4680 haplotypes // CNS Spectr. 2019. V. 25. № 3. P. 409.
  15. Kim Y.K., Ham B.J., Han K.M. Interactive effects of genetic polymorphisms and childhood adversity on brain morphologic changes in depression // Prog. Neuropsychopharmacol. Biol. Psychiatry. 2019. V. 91. P. 4.
  16. Rabadanova A.I., Taygibova Z.A. Characteristic EEG patterns in individuals with nonchemical addiction // Human Physiology. 2020. V. 46. № 6. P. 636.
  17. Taigibova Z.A., Rabadanova A.I. EEG coherence as an indicator of integrative brain processes in Internet and game addiction // Human Physiology. 2022. V. 48. № 4. P. 421.
  18. Thompson B.M., Andrews S.R. An historical commentary on the physiological effects of music: Tomatis, Mozart and neuropsychology // Integr. Physiol. Behav. Sci. 2000. V. 35. № 3. Р. 174.
  19. Serebrovskaya N.E., Savin R.I., Rybina S.A. [Music as a subject of psychology study] // Psychology. Historical-critical Reviews and Current Researches. 2023. V. 12. № 8. P. 55.
  20. Konareva I.N. [Encephalogram and emotional state modifications under the influence of listening music] // Scientific Notes of Taurida V. Vernadsky National University. Series: “Biology, Chemistry”. 2010. V. 23 (62). № 1. Р. 40.
  21. Sutherland M., Paus T., Zatorre R.J. Neuroanatomical correlates of musical transposition in adolescents: a longitudinal approach // Front. Syst. Neurosci. 2013. V. 7. P. 113.
  22. Kunavin M.A., Sokolova L.V. [Spectral characteristics of bioelectrical brain activity of students in listening to audio-stimuli of different component-structural composition] // Hum. Ecol. 2014. № 3. Р. 34.
  23. Dymnikova M. [Physiological aspects of music and longevity] // Adv. Gerontol. 2015. V. 28. № 4. Р. 645.
  24. Chang Y.H., Lee Y.Y., Liang K.C. et al. Experiencing affective music in eyes-closed and eyes-open states: an electroencephalography study // Front. Psychol. 2015. V. 6. Р. 1160.
  25. Fedotchev A.I., Bondar A.T., Bakhchina A.V. et al. [Effects of music-acoustic signals, online controlled by EEG oscillators of the subject] // Ross. Fiziol. Zh. Im. I.M. Sechenova. 2015. V. 101. № 8. P. 970.
  26. Krylov V.V., Trifonov I.S., Kochetkova O.O. [К448] // Russ. J. Neurosurg. 2016. № 4. Р. 115.
  27. Rauscher F.H., Shaw G.L., Ky K.N. Listening to Mozart enhances spatial-temporal reasoning: Towards a neurophysilogical basis // Neurosci. Lett. 1995. V. 185. № 1. P. 44.
  28. Bellier L., Llorens A., Marciano D. et al. Music can be reconstructed from human auditory cortex activity using nonlinear decoding models // PLoS Biol. 2023. V. 21. № 8. P. e3002176.
  29. De Bartolo D., Morone G., Giordani G. et al. Effect of different music genres on gait patterns in Parkinson’s disease // Neurol. Sci. 2020. V. 41. № 3. Р. 575.
  30. Victorino D.B., Scorza C.A., Fiorini A.C. et al. “Mozart effect” for Parkinson’s disease: Music as medicine // Neurol. Sci. 2021. V. 42. № 1. Р. 319.
  31. Esch R.J., Shi S., Bernas A.A. et al. Bayesian method for inference of effective connectivity in brain networks for detecting the Mozart effect // Comput. Biol. Med. 2020. V. 127. Р. 127.
  32. Bedetti C., D’Alessandro P., Piccirilli M. et al. Mozart’s music and multidrug-resistant epilepsy: A potential EEG index of therapeutic effectiveness // Psychiatr. Danub. 2018. V. 30. Suppl. 7. P. 567.
  33. Paprad T., Veeravigrom M., Desudchit T. Effect of Mozart K.448 on interictal epileptiform discharges in children with epilepsy: a randomized controlled pilot study // Epilepsy Behav. 2021. V. 114. Pt. A. P. 107177.
  34. Lin L.C., Lee W.T., Wu H.C. et al. Mozart K.448 and epileptiform discharges: effect of ratio of lower to higher harmonics // Epilepsy Res. 2010. V. 89. № 2–3. P. 238.
  35. Sesso G., Sicca F. Safe and sound: meta-analyzing the Mozart effect on epilepsy // Clin. Neurophysiol. 2020. V. 131. № 7. P. 1610.
  36. Yakupov E.Z., Nalbat A.V. [Music therapy for neurorehabilitation of patiens with stroke] // Medicine and Art. 2023. V. 1. № 2. Р. 58.
  37. Yakupov E.Z., Nalbat A.V., Semenova M.V., Tlegeno-va K.A. [Music therapy as an effective method of neurorehabilitation] // Zh. Nevrol. Psikhiatr. Im. S.S. Korsakova. 2017. V. 117. № 5. Р. 14.
  38. Sinclair D.J., Zhao S., Qi F. et al. Electroconvulsive therapy for treatment-resistant schizophrenia // Cochrane Database Syst. Rev. 2019. V. 3. № 3. Р. CD011847.
  39. Dymnikova M.V., Ogorodnikova E.A. Cognitive characteristics of aural music perception // The Scientific Method. 2018. № 18. Р. 31.
  40. Sutherland M., Paus T., Zatorre R.J. Neuroanatomical correlates of musical transposition in adolescents: a longitudinal approach // Front. Syst. Neurosci. 2013. V. 7. P. 113.
  41. Fedotchev A.I. Efficacy of EEG biofeedback procedures in correcting stress-related functional disorders // Human Physiology. 2010. V. 36. № 1. P. 86.
  42. Pavlygina R.A., Sakharov D.S., Davydov V.I. Spectral analysis of the human EEG during listening to musical compositions // Human Physiology. 2004. V. 30. № 1. Р. 54.
  43. Sulimov A.V., Lyubimova Yu.V., Pavlygina R.A., Davydov V.I. [Spectral analysis of the human EEG while listening to music] // Zh. Vyssh. Nerv. Deiat. Im. I.P. Pavlova. 2000. V. 50. № 1. P. 62.
  44. Young K.S. Internet addiction: The emergence of a new clinical disorder // CyberPsychol. Behav. 1998. V. 1. № 3. P. 237.
  45. Loskutova V.A. [Internet addiction as a form of non-chemical addictive disorders]: abstract. dissertation of the Candidate of Medical Sciences. Novosibirsk, 2004. 23 p.
  46. Soldatova G.U., Rasskazova E.I., Vishneva A.E. et al. [Born digital: family context and cognitive development]. M.: Acropolis, 2022. 356 p.
  47. Weinberger N. [Music and the brain] // In the World of Science. 2005. № 2. P. 3.
  48. Panyusheva T.D. [Musical brain: a review of domestic and foreign studies] // J. “Asymmetry”. 2008. V. 2. № 2. P. 41.
  49. Bohan N.A., Mandel A.I., Ivanova S.A. et al. [Old and new problems of narcology in the context of interdisciplinary research] // J. Addict. Probl. 2017. № 1. P. 26.
  50. Koob D.F. Drug addiction: Hyperkatifeia/negative reinforcement as a framework for medications development // Pharmacol. Rev. 2021. V. 73. № 1. P. 163.
  51. Skiba Ya.B., Odinak M.M., Polushin A.Yu. et al. [Mozart effect in patients with epilepsy] // Epilepsy and Paroxysmal Conditions. 2021. V. 23. № 3. Р. 264.
  52. Lin L.C., Lee M.W., Wei R.C. et al. Mozart K.448 listening decreased seizure recurrence and epileptiform discharges in children with first unprovoked seizures: A randomized controlled study // BMC Complement. Altern. Med. 2014. V. 14. P. 17.
  53. Zenkov L.R. [Clinical electroencephalography (with elements of epileptology)]. A guide for doctors. M.: MEDpressinform, 2017. 360 p.
  54. Sauseng P., Klimesch W. What does phase information of oscillatory brain activity tell us about cognitive processes? // Neurosci. Biobehav. Rev. 2008. V. 32. № 5. Р. 1001.
  55. Alexandrov M.V., Ivanov L.B., Lytaev S.A. et al. [Electroencephalography: a guide] / Ed. Alexandrov M.V. 3rd ed., reprint. and add. St. Petersburg: SpetsLit, 2020. 224 p.
  56. Radchenko G.S., Gromov K.N., Parin S.B. et al. Influence of tonal modulation on spectral characteristics of human EEG // Int. J. Psychophysiol. 2016. V. 108. P. 88.
  57. Melnikov M.E. [A single phenomenon with a multitude of interpretations: EEG frontal alpha asymmetry in healthy people. Part II] // Usp. Fiziol. Nauk. 2021. V. 52. № 4. P. 72.
  58. Narodova E.A., Schneider N.A., Narodova V.V. et al. [The role of specialization of the cerebral hemispheres in emotional control] // Neurology. 2020. V. 19. № 4. Р. 23.
  59. Melnikov M.E. [A single phenomenon with a multitude of interpretations: EEG frontal alpha asymmetry in healthy people. Part I] // Usp. Fiziol. Nauk. 2021. V. 52. № 3. Р. 56.
  60. Di G.Q., Wu S.X. Emotion recognition from sound stimuli based on back-propagation neural networks and electroencephalograms // J. Acoust. Soc. Am. 2015. V. 138. № 2. P. 994.
  61. Mikutta C., Altorfer A., Strik W., Koenig T. Emotions, arousal, and frontal alpha rhythm asymmetry during Beethoven’s 5th symphony // Brain Topogr. 2012. V. 25. № 4. P. 423.
  62. Schmidt L.A., Trainor L.J. Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions // Cogn. Emot. 2001. V. 15. № 4. P. 487.
  63. Trochidis K., Bigand E. Investigation of the effect of mode and tempo on emotional responses to music using EEG power asymmetry // J. Psychophysiol. 2013. V. 27. P. 142.
  64. Skorik S.O., Almaev N.A. [Subjective evaluation of major and minor chords by professional musicians] // The World of Science. Pedagogy and Psychology. 2019. V. 7. № 6. Р. 24.
  65. Bazanova O.M., Kondratenko A.V. [Possible distinctions of major and minor triads’ emotional perception] // Usp. Fiziol. Nauk. 2018. V. 49. № 1. Р. 87.
  66. Giraud A.L., Poeppel D. Cortical oscillations and speech processing: emerging computational principles and operations // Nat. Neurosci. 2012. V. 15. № 4. P. 511.
  67. O’Connell M.N., Barczak A., Ross D. et al. Multi-Scale Entrainment of Coupled Neuronal Oscillations in Primary Auditory Cortex // Front. Hum. Neurosci. 2015. V. 9. P. 655.
  68. Leong V., Goswami U. Assessment of rhythmic entrainment at multiple timescales in dyslexia: evidence for disruption to syllable timing // Hear Res. 2014. V. 308. № 100. P. 141.
  69. Zimmermann M.B., Diers K., Strunz L. Listening to Mozart improves current mood in adult ADHD – a randomized controlled pilot study // Front. Psychol. 2019. V. 10. P. 1104.
  70. Tibekina L.M., Alimova M.A., Shumakova T.A. [The asymmetric brain. Mental, psychophysiological and clinical aspects]. St. Petersburg: Elbi-SPb, 2018. Р. 128.
  71. Flores-Gutiérrez E.O., Díaz J.L., Barrios F.A. et al. Metabolic and electric brain patterns during pleasant and unpleasant emotions induced by music masterpieces // Int. J. Psychophysiol. 2007. V. 65. № 1. P. 69.
  72. Quarto T., Fasano M.C., Taurisano P. et al. Interaction between DRD2 variation and sound environment on mood and emotion-related brain activity // Neuroscience. 2017. V. 341. P. 9.
  73. Montag C., Duke É., Reuter M. A short summary of neuroscientific findings on Internet addiction / Internet Addiction. Studies in Neuroscience, Psychology and Behavioral Economics // Eds. Montag C., Reuter M. Springer, 2017. P. 209. doi: 10.1007/978-3-319-46276-9_12
  74. Blum K., Liu Y., Shriner R., Gold M.S. Reward circuitry dopaminergic activation regulates food and drug craving behavior // Curr. Pharm. Des. 2011. V. 17. № 12. P. 1158.
  75. Chelyapina M.V., Sharova E.V., Zaitsev O.S. [Clinical/encephalographic syndrome of dopamine deficiency in patients with depressed consciousness after severe brain injury] // Zh. Nevrol. Psikhiatr. Im. S.S. Korsakova. 2015. V. 115. № 4. P. 9.
  76. Molodavskaya I.N. [Dopaminergic system and its relationship with hypothalamic-pituitary-gonadal and hypothalamic-pituitary-thyroid systems (literature review)] // Sib. Sci. Med. J. 2020. № 40 (6). P. 34.
  77. Yin J., Chen K.M., Clark M.J. et al. Structure of a D2 dopamine receptor–G-protein complex in a lipid membrane // Nature. 2020. V. 584. № 7819. Р. 584.
  78. Satoko O., Hiromaso F. D1- and D2-type dopamine receptors are immunolocalized in pial and layer I astrocytes in the rat cerebral cortex // Front. Neuroanat. 2023. V. 17. P. 1111008.
  79. Paul G.A., Christina B., Adam G.C. Cell-type-specific D1 dopamine receptor modulation of projection neurons and interneurons in the prefrontal cortex // Cereb. Cortex. 2019. V. 29. № 7. P. 3224.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).