Localization of Moving Sound Stimuli under Conditions of Spatial Masking

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The aim of this study was to investigate spatial masking of noise signals in the delayed motion paradigm. Spatial effects were created by interaural level differences (ILD). Stationary maskers were located laterally or near the head midline, while test signals moved at different velocities from the head midline towards the ears, or in the opposite direction. The masking effect was measured by shifts in the perceived azimuthal positions of the starting and final points of signal trajectories, compared to their positions in silence. The perceived trajectories of all test signals shifted in the opposite direction from the masker. The masking effect was most pronounced in the spatial regions closest to the maskers, and was stronger when the signal moved towards the masker, compared to moving away from it. The final points were perceptually shifted further than the starting points. Signal velocity and masker presentation side (left or right) did not change the degree of masking.

Texto integral

Acesso é fechado

Sobre autores

E. Petropavlovskaia

Pavlov Institute of Physiology, RAS

Autor responsável pela correspondência
Email: petropavlovskaiae@infran.ru
Rússia, St. Petersburg

L. Shestopalova

Pavlov Institute of Physiology, RAS

Email: petropavlovskaiae@infran.ru
Rússia, St. Petersburg

D. Salikova

Pavlov Institute of Physiology, RAS

Email: petropavlovskaiae@infran.ru
Rússia, St. Petersburg

Bibliografia

  1. Litovsky R.Y. Spatial release from masking // Acoust. Today. 2012. V. 8. № 2. P. 18.
  2. Gutschalk A., Micheyl C., Oxenham A.J. The pulse-train auditory aftereffect and the perception of rapid amplitude modulations // J. Acoust. Soc. Am. 2008. V. 123. № 2. P. 935.
  3. Lane C.C., Delgutte B. Neural correlates and mechanisms of spatial release from masking: single-unit and population responses in the Inferior Colliculus // J. Neurophysiol. 2005. V. 94. № 2. P. 1180.
  4. Al’tman Ya.A. [Lokalizatsiya dvizhushchegosya istochnika zvuka] (Localization of a Moving Sound Source). Leningrad: Nauka, 1983. 176 p.
  5. Al’tman Ya.A. [Prostranstvennyi slukh (Spatial Hearing)]. St. Petersburg: Inst. Fiziol. Im. I.P. Pavlova Ross. Akad. Nauk, 2011. 311 p.
  6. Yost W.A. The cocktail party effect: 40 years later / Localization and Spatial Hearing in Real and Virtual Environments // Eds. Gilkey R., Anderson T. Mahwah, NJ: Erlbaum Press, 1997. P. 329.
  7. Bibee J.M., Stecker G.C. Spectrotemporal weighting of binaural cues: Effects of a diotic interferer on discrimination of dynamic interaural differences // J. Acoust. Soc. Am. 2016. V. 140. № 4. P. 2584.
  8. Al’tman Ya.A., Vaitulevich S.F. [Slukhovye vyzvannye potentsialy cheloveka i lokalizatsiya istochnika zvuka] (Human Auditory Evoked Potentials and Sound Source Localization). St. Petersburg: Nauka, 1992. 136 p.
  9. Shestopalova L., Bőhm T.M., Bendixen A. et al. Do audio-visual motion cues promote segregation of auditory streams? // Front. Neurosci. 2014. V. 8. P. 64.
  10. Pastore M.T., Yost W.A. Spatial Release from Masking with a Moving Target // Front. Psychol. 2017. V. 8. P. 2238.
  11. Yost W.A., Brown C.A. Localizing the sources of two independent noises: Role of time varying amplitude differences // J. Acoust. Soc. Am. 2013. V. 133. № 4. P. 2301.
  12. Zhong X., Yost W.A. How many images are in an auditory scene? // J. Acoust. Soc. Am. 2017. V. 141. № 4. P. 2882.
  13. Varfolomeev A.L., Starostina L.V. [Human auditory evoked potentials to an illusory sound image movement] // Ross. Fiziol. Zh. Im. I.M. Sechenova. 2006. V. 92. № 9. P. 1046.
  14. Krumbholz K., Hewson-Stoate N., Schonwiesner M. Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices // J. Neurophysiol. 2007. V. 97. № 2. P. 1649.
  15. Getzmann S. Effects of velocity and motion-onset delay on detection and discrimination of sound motion // Hear. Res. 2008. V. 246. № 1-2. P. 44.
  16. Getzmann S. Effect of auditory motion velocity on reaction time and cortical processes // Neuropsychologia. 2009. V. 47. № 12. P. 2625.
  17. Getzmann S., Lewald J. Effects of natural versus artificial spatial cues on electrophysiological correlates of auditory motion // Hear. Res. 2010. V. 259. № 1-2. P. 44.
  18. Semenova V.V., Petropavlovskaia E.A., Shestopalova L.B., Nikitin N.I. [Perception constants for delayed movement of sound stimuli] // Usp. Fiziol. Nauk. 2020. V. 5. № 2. P. 55.
  19. Shestopalova L.B., Petropavlovskaia E.A., Salikova D.A. et al. Event-related potentials in conditions of auditory spatial masking in humans // Human Physiology. 2022. V. 48. № 6. P. 633.
  20. Shestopalova L.B., Salikova D.A., Petropavlovskaia E.A. Auditory after-effects: influence of a stationary adapter on the perception of moving stimuli // Neurosci. Behav. Physiol. 2023. V. 53. № 7. P. 1219.
  21. Phillips D.P., Hall S.E., Boehnke S.E. Central auditory onset responses, and temporal asymmetries in auditory perception // Hear. Res. 2002. V. 167. № 1-2. P. 192.
  22. Neuhoff J.G. Perceptual bias for rising tones // Nature. 1998. V. 395. № 6698. P. 123.
  23. Ghazanfar A.A., Neuhoff J.G., Logothetis N.K. Auditory looming perception in rhesus monkeys // Proc. Natl. Acad. Sci. U.S.A. 2002. V. 99. № 24. P. 15755.
  24. Hall D.A., Moore D.R. Auditory Neuroscience: The Salience of Looming Sounds // Curr. Biol. 2003. V. 13. № 13. P. R91.
  25. Lu T., Liang L., Wang X. Neural representations of temporally asymmetric stimuli in the auditory cortex of awake primates // J. Neurophysiol. 2001. V. 85. № 6. P. 2364.
  26. Seifritz E., Neuhoff J.G., Bilecen D. et al. Neural processing of auditory looming in the human brain // Curr. Biol. 2002. V. 12. № 24. P. 2147.
  27. Lingner A., Pecka M., Leibold C., Grothe B. A novel concept for dynamic adjustment of auditory space // Sci. Rep. 2018. V. 8. № 1. P. 8335.
  28. Middlebrooks J.C. A Search for a Cortical Map of Auditory Space // J. Neurosci. 2021. V. 41. № 27. P. 5772.
  29. Salminen N.H., May P.J., Alku P., Tiitinen H. A population rate code of auditory space in the human cortex // PLoS One. 2009. V. 4. № 10. P. 7600.
  30. Magezi D.A, Krumbholz K. Evidence for opponent-channel coding of interaural time differences in human auditory cortex // J. Neurophysiol. 2010. V. 104. № 4. P. 1997.
  31. Briley P.M., Kitterick P.T., Summerfield A.Q. Evidence for opponent process analysis of sound source location in humans // J. Assoc. Res. Otolaryngol. 2013. V. 14. № 1. P. 83.
  32. Phillips D.P., Hall S.E. Psychophysical evidence for adaptation of central auditory processors for interaural differences in time and level // Hear. Res. 2005. V. 202. № 1-2. P. 188.
  33. Dingle R.N., Hall S.E., Phillips D.P. The three-channel model of sound localization mechanisms: interaural level differences // J. Acoust. Soc. Am. 2012. V. 131. № 5. P. 4023.
  34. Dingle R.N., Hall S.E., Phillips D.P. The three-channel model of sound localization mechanisms: Interaural time differences // J. Acoust. Soc. Am. 2013. V. 133. № 1. P. 417.
  35. Briley P.M., Goman A.M., Summerfield A.Q. Physiological evidence for a midline spatial channel in human auditory cortex // J. Assoc. Res. Otolaryngol. 2016. V. 17. № 4. P. 331.
  36. Lee A.K., Deane-Pratt A., Shinn-Cunningham B.G. Localization interference between components in an auditory scene // J. Acoust. Soc. Am. 2009. V. 126. № 5. P. 2543.
  37. Irvine D.R.F. Auditory perceptual learning and changes in the conceptualization of auditory cortex // Hear Res. 2018 V. 366. P. 3.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The structure of the stimulation epoch. The gray and black lines are stimuli with different movement speeds. The upper two rows illustrate the order of presentation of test signals in silence, the lower two rows in the presence of a masker.

Baixar (400KB)
3. Fig. 2. Perceived trajectories of movement of signals in silence and during masking. A, C — in series with lateral maskers, B — with a central masker. Semicircular arcs are a schematic representation of the anterior sector of the subjective sound space. The scales on the arcs are the angular distance from the median line of the head (azimuth), in degrees. Arrows are the perceived trajectories of the signals. Lines of the same color (gray or black) correspond to the trajectories of the same signal in silence (thin lines) and in masking (bold lines). The numbers near the arrows are the conditional numbering of NT and CT.

Baixar (548KB)
4. Fig. 3. Perceptual shift of the initial and end points of the signal trajectories under masking conditions compared to their presentation in silence, at different calculated distances between the signal and the masker (DIFF).

Baixar (220KB)
5. Fig. 4. The scheme of the relative position of the masker, the starting and ending points of the signals included in the analysis of variance. A — two-factor analysis of the displacement of the central points with lateral maskers (DIFF = 10 dB), B, C — three-factor analysis of the displacement of the central and lateral points under the action of the maskers closest to them (B: DIR = 0 dB) and when the signal and the masker are separated by an estimated angular distance of 90 degrees (C: DIR = 10 dB). On the arrows, the circle corresponds to the beginning of the trajectory, the triangle to the end of the trajectory. If the point is included in the analysis, the corresponding element is indicated in black, if it is not included — in white. The number on the head diagram is the number of the corresponding point in Fig. 2. Below the head is the average value of the displacement of the perceived position of the corresponding point in disguise compared to presentation in silence.

Baixar (540KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies