Protective Mechanisms of High-Density Lipoproteins on the Cardiovascular System during Physical Exercise

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Numerous epidemiological studies have proven an inverse relationship between the content of high-density lipoproteins (HDL) in blood plasma and the risk of developing cardiovascular diseases (CVD) of atherosclerotic genesis. On the other hand, it is well known that regular physical activity is an important component of the treatment of most CVD and prevents the development of atherosclerosis. Thus, the beneficial effect of physical activity on the cardiovascular system can be largely associated with an increase in the level of plasma HDL under these conditions, changes in their composition and functional properties. The purpose of this review is to discuss possible mechanisms of the protective effect of HDL on the cardiovascular system during physical activity.

About the authors

O. N Poteryaeva

Federal Research Center of Fundamental and Translational Medicine, Institute of Biochemistry

Email: Оlga_Poteryaeva@mail.ru
ORCID iD: 0000-0003-1068-2431
Dr. Sci., (Medicine), Leading researcher Novosibirsk, Russian Federation

I. F Usynin

Federal Research Center of Fundamental and Translational Medicine, Institute of Biochemistry

Email: ivan.usynin@yandex.ru
ORCID iD: 0000-0003-1752-9034
Dr. Sci. (Biology), Head of the laboratory Novosibirsk, Russian Federation

References

  1. Jomard A., Osto E. High density lipoprotein: metabolism, function, and therapeutic potential // Front. Cardiovasc. Med. 2020. V. 7. P. 39.
  2. Бойцов С.А., Погосова Н.В., Аншелес А.А. и др. Кардиоваскулярная профилактика 2022. Российские национальные рекомендации // Российский кардиологический журнал. 2023. Т. 28. № 5. С. 5452.
  3. Denimal D. Antioxidant and anti-inflammatory functions of high-density lipoprotein in type 1 and type 2 diabetes // Antioxidants (Basel). 2023. V. 13. № 1. P. 57.
  4. Kontush A. HDL and reverse remnant-cholesterol transport (RRT): Relevance to cardiovascular disease // Trends Mol. Med. 2020. V. 26. № 12. P. 1086.
  5. Lui D.T.W., Tan K.C.B. High-density lipoprotein in diabetes: Structural and functional relevance // J. Diabetes Investig. 2024. V. 15. № 7. P. 805.
  6. Усынин И.Ф., Потеряева О.Н., Русских Г.С. и др. Аполипопротеин А-1 стимулирует секрецию инсулина и матриксных металлопротеиназ островками Лангерганса поджелудочной железы // Биомед. химия. 2018. Т. 64. № 2. С. 195.
  7. Cochran B.J., Ong K-L., Manandhar B., Rye K-A. High density lipoproteins and diabetes // Cells. 2021. V. 10. № 4. P. 850.
  8. Robert J., Osto E., von Eckardstein A. The Endothelium is both a target and a barrier of HDL's protective functions // Cells. 2021. V. 10. № 5. P. 1041.
  9. Потеряева О.Н., Усынин И.Ф. Молекулярные механизмы регуляторного действия липопротеинов высокой плотности на функции эндотелия // Биомед. химия. 2024. Т. 70. № 4. P. 206.
  10. Xing L., Liu Y., Wang J. et al. High-density lipoprotein and heart failure // Rev. Cardiovasc. Med. 2023. V. 24. № 11. P. 321.
  11. Pelliccia A., Sharma S., Gati S. et al., om uweiu рабочей группы ESC. Рекомендации ESC по спортивной кардиологии и физическим тренировкам у пациентов с сердечно-сосудистыми заболеваниями 2020 // Российский кардиологический журнал. 2021. Т. 26. № 5. С. 4488.
  12. Zhao S., Zhong J., Sun C., Zhang J. Effects of aerobic exercise on TC, HDL-C, LDL-C and TG in patients with hyperlipidemia: A protocol of systematic review and meta-analysis // Medicine (Baltimore). 2021. V. 100. № 10. P. e25103.
  13. Cho K.H. The current status of research on high-density lipoproteins (HDL): A paradigm shifts from HDL quantity to HDL quality and HDL functionality // Int. J. Mol. Sci. 2022. V. 23. № 7. P. 3967.
  14. Khan H., Khan S., Arif T., Shah I. Effects of aerobic exercise protocol on high density lipoprotein HDL level among young adults; an experimental study // SPARK. 2022. V. 7. № 1. P. 26.
  15. Braga P.G.S., Freitas F.R., Bachi A.L.L. et al. Regular practice of physical activity improves cholesterol transfers to high-density lipoprotein (HDL) and other HDL metabolic parameters in older adults // Nutrients. 2023. V. 15. № 23. P. 4871.
  16. Franczyk B., Giuba-Brzózka A., Ciałkowska-Rysz A. et al. The impact of aerobic exercise on HDL quantity and quality: A narrative. Review // Int. J. Mol. Sci. 2023. V. 24. № 5. P. 4653.
  17. Julian V., Bergsten P., Forslund A. et al. Sedentary time has a stronger impact on metabolic health than moderate to vigorous physical activity in adolescents with obesity: A cross-sectional analysis of the Beta-JUDO study // Pediatr. Obes. 2022. V. 17. № 7. P. e12897.
  18. Way K.L., Hackett D.A., Baker M.K., Johnson N.A. The effect of regular exercise on insulin sensitivity in type 2 diabetes mellitus: A systematic review and meta analysis // Diabetes Metab. J. 2016. V. 40. № 4. P. 253.
  19. Smart N.A., Downes D., van der Touw T. et al. The effect of exercise training on blood lipids: A systematic review and meta-analysis // Sports Med. 2025. V. 55. № 1. P. 67.
  20. Muscella A., Stefano E., Marsigliante S. The effects of exercise training on lipid metabolism and coronary heart disease // Am. J. Physiol. Hear. Circ. Physiol. 2020. V. 319. № 1. P. H76.
  21. Diniz T.A., Rossi F.E., Fortaleza A.C.S. et al. Changes in HDL-c concentrations after 16 weeks of combined training in postmenopausal women: characteristics of positive and negative responders // Appl. Physiol. Nutr. Metab. 2018. V. 43. № 1. P. 38.
  22. Панин Л.Е., Маянская Н.Н. Лизосомы: роль в адаптации и восстановлении. Новосибирск: Наука, 1987. 198 с.
  23. Розуменко А.А., Поляков Л.М. Липидный и эндокринный статус участников продолжительных лыжных переходов в Арктике // Атеросклероз. 2021. Т. 17. № 1. С. 38.
  24. Потеряева О.Н., Панин Л.Е., Атучина Н.В., Поляков Л.М. Содержание аполипопротеинов A-I, B и E при интенсивной физической нагрузке и в восстановительный период // БЭБИМ. 1998. V. 126. № 12. С. 615.
  25. Wu L., Soundarapandian M.M., Castoreno A.B. et al. LDL-cholesterol reduction by ANGPTL3 inhibition in mice is dependent on endothelial lipase // Circ Res. 2020. V. 127. № 8. P. 1112.
  26. Wood G., Taylor E., Ng. V. et al. Estimating the effect of aerobic exercise training on novel lipid biomarkers: A systematic review and multivariate meta-analysis of randomized controlled trials // Sports Med. 2023. V. 53. № 4. P. 871.
  27. Miyashita M., Eto M., Sasai H. et al. Twelve-week jogging training increases pre-heparin serum lipoprotein lipase concentrations in overweight/obese middle-aged men // J. Atheroscler. Thromb. 2010. V. 17. № 1. P. 21.
  28. Riedl I., Yoshioka M., Nishida Y. et al. Regulation of skeletal muscle transcriptome in elderly men after 6 weeks of endurance training at lactate threshold intensity // Exp. Gerontol. 2010. V. 45. № 11. P. 896.
  29. Rahmati-Ahmadabad S., Azarbayjani M.-A., Farzanegi P., Moradi L. High-intensity interval training has a greater effect on reverse cholesterol transport elements compared with moderate-intensity continuous training in obese male rats // Eur. J. Prev. Cardiol. 2019. V. 28. № 7. P. 692.
  30. Потеряева О.Н., Усынин И.Ф. Дисфункциональные липопротеины высокой плотности при сахарном диабете 2 типа // Пробл. эндокринол. 2022. Т. 68. № 4. С. 69.
  31. Торховская Т.И., Кудинов В.А., Захарова Т.С. и др. Дисфункциональные липопротеины высокой плотности: роль в атерогенезе и потенциальные мишени для фосфолипидной терапии // Кардиология. 2018. Т. 58. № 3. С. 73.
  32. Adorni M.P., Ronda N., Bernini F., Zimetti F. High density lipoprotein cholesterol efflux capacity and atherosclerosis in cardiovascular disease: Pathophysiological aspects and pharmacological perspectives // Cells. 2021. V. 10. № 3. P. 574.
  33. Sirtori C.R., Corsini A., Rusciac M. The role of high-density lipoprotein cholesterol in 2022 // Curr. Atheroscler. Rep. 2022. V. 24. № 5. P. 365.
  34. Allard-Ratick M.P., Kindya B.R., Khambhati J. et al. HDL: Fact, fiction, or function? HDL cholesterol and cardiovascular risk // Eur. J. Prev. Cardiology. 2021. V. 28. № 2. P. 166.
  35. Toh R. Assessment of HDL cholesterol removal capacity: Toward clinical application // J. Atheroscler. Thromb. 2019. V. 26. № 2. P. 111.
  36. Ruiz-Ramie J.J., Barber J.L., Sarzynski M.A. Effects of exercise on HDL functionality // Curr. Opin. Lipidol. 2019. V. 30. № 1. P. 16.
  37. Wesnigk J., Bruyndonckx L., Hoymans V.Y. et al. Impact of lifestyle intervention on HDL-induced eNOS activation and cholesterol efflux capacity in obese adolescent // Cardiol. Res. Pract. 2016. V. 2016. P. 2820432.
  38. Hernaez A., TrinidadSoria-Florido M., Castaner O. et al. Leisure time physical activity is associated with improved HDL functionality in high cardiovascular risk individuals: A cohort study // Eur. J. Preven. Cardiology. 2021. V. 28. № 12. P. 1392.
  39. Cardner M., Yalcinkaya M., Goetze, S. et al. Structure-function relationships of HDL in diabetes and coronary heart disease // JCI Insight. 2020. V. 5. № 1. P. e131491.
  40. Casella-Filho A., Chagas A.C., Maranhao R.C. et al. Effect of exercise training on plasma levels and functional properties of high-density lipoprotein cholesterol in the metabolic syndrome // Am. J. Cardiol. 2011. V. 107. № 8. P. 1168.
  41. Boyer M., Mitchell P.L., Poirier D.P. et al. Impact of a 1-year lifestyle modification program on cholesterol efflux capacities in men with abdominal obesity and dyslipidemia // Am. J. Physiol. Endocrinol. Metab. 2018. V. 315. № 4. P. E460.
  42. Liang M., Pan Y., Zhong T. et al. Effects of aerobic, resistance, and combined exercise on metabolic syndrome parameters and cardiovascular risk factors: A systematic review and network meta-analysis // Rev. Cardiovasc. Med. 2021. V. 22. № 4. P. 1523.
  43. Ho C-C., Nfor O.N., Chen Y-T. et al. Jogging and weight training associated with increased high-density lipoprotein cholesterol levels in Taiwanese adults // J. Inter. Soc. Sports Nutrition. 2022. V. 19. № 1. P. 664.
  44. Sowa P.W., Winzer E.B., Hommel J. et al. Impact of different training modalities on high-density lipoprotein function in HFpEF patients: A substudy of the OptimEx trial // ESC Heart Fail. 2022. V. 9. № 5. P. 3019.
  45. Furuyama F., Koba S., Yokota Y. et al. Effects of cardiac rehabilitation on high density lipoprotein-mediated cholesterol efflux capacity and paraoxonase-1 activity in patients with acute coronary syndrome // J. Atheroscler. Thromb. 2018. V. 25. № 2. P. 153.
  46. Khan A.A., Mundra P.A., Straznicky N.E. et al. Weight loss and exercise alter the high density lipoprotein lipidome and improve high-density lipoprotein functionality in metabolic syndrome // Arterioscler. Thromb. Vasc. Biol. 2018. V. 38. № 2. P. 438.
  47. Marques L.R., Diniz T.A., Antunes B.M. et al. Reverse cholesterol transport: molecular mechanisms and the non-medical approach to enhance HDL cholesterol // Front. Physiol. 2018. V. 9. P. 526.
  48. Ghanbari-Niaki A., Ghanbari-Abarghooi S., Rahbarizadeh F. et al. Heart ABCA1 and PPAR-α genes expression responses in male rats: Effects of high intensity treadmill running training and aqueous extraction of black crataegus-pentaegyna // Res. Cardiovasc. Med. 2013. V. 2. № 4. P. 153.
  49. Ngo Sock S.E., Chapados N.A., Lavoie J.M. LDL receptor and Pcsk9 transcripts are decreased in liver of ovariectomized rats: effects of exercise training // Horm. Metab. Res. 2014. V. 46. № 8. P. 550.
  50. Zhang S., Liu Y., Li Q. et al. Exercise improved rat metabolism by raising PPAR-α // Int. J. Sports Med. 2011. V. 32. № 8. P. 568.
  51. Bougarne N., Weyers B., Desmet S.J. et al. Molecular actions of PPARα in lipid metabolism and inflammation // Endocr. Rev. 2018. V. 39. № 5. P. 760.
  52. Pagonas N., Vlatsas S., Bauer F. et al. The impact of aerobic and isometric exercise on different measures of dysfunctional high-density lipoprotein in patients with hypertension // Eur. J. Prev. Cardiol. 2019. V. 26. № 12. P. 1301.
  53. Hansel B., Bonnefont-Rousselot D., Orsoni A. et al. Lifestyle intervention enhances high-density lipoprotein function among patients with metabolic syndrome only at normal low-density lipoprotein cholesterol plasma levels // J. Clin. Lipidol. 2016. V. 10. № 5. P. 1172.
  54. Välimäki I.A., Vuorimaa T., Ahotupa M. et al. Strenuous physical exercise accelerates the lipid peroxide clearing transport by HDL // Eur. J. Appl. Physiol. 2016. V. 116. № 9. P. 1683.
  55. Nobecourt E., Jacqueminet S., Hansel B. et al. Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes: relationship to elevated oxidative stress and hyperglycemia // Diabetologia. 2005. V. 48. № 3. P. 529.
  56. Tiainen S., Luoto R., Ahotupa M. et al. 6-mo aerobic exercise intervention enhances the lipid peroxide transport function of HDL // Free Radic. Res. 2016. V. 50. № 11. P. 1279.
  57. Ribeiro I.C., Iborra R.T, Neves M.Q. et al. HDL atheroprotection by aerobic exercise training in type 2 diabetes mellitus // Med. Sci. Sports Exerc. 2008. V. 40. № 5. P. 779.
  58. Jia C., Anderson J.L.C., Gruppen E.G. et al. High-density lipoprotein antiinflammatory capacity and incident cardiovascular events // Circulation. 2021. V. 143. № 20. P. 1935.
  59. Sang H., Yao S., Zhang L. et al. Walk-run training improves the antiinflammation properties of high-density lipoprotein in patients with metabolic syndrome // J. Clin. Endocrinol. Metab. 2015. V. 100. № 3. P. 870.
  60. Roberts C.K., Ng C., Hama S. et al. Effect of a short-term diet and exercise intervention on inflammatory/anti-inflammatory properties of HDL in overweight/obese men with cardiovascular risk factors // J. Appl. Physiol. 2006. V. 101. № 6. P. 1727.
  61. Ромакина В.В., Жиров И.В., Насонова С.Н. и др. МикроРНК как биомаркеры сердечно-сосудистых заболеваний // Кардиология. 2018. Т. 58. № 1. С. 66.
  62. Riedel S., Radzanowski S., Bowen T.S. Exercise training improves high-density lipoprotein-mediated transcription of proangiogenic microRNA in endothelial cells // Eur. J. Prev. Cardiol. 2015. V. 22. № 7. P. 899.
  63. Ma Y., Liu H., Wang Y. et al. Roles of physical exercise-induced MiR-126 in cardiovascular health of type 2 diabetes // Diabetol. Metab. Syndr. 2022. V. 14. № 1. P. 169.
  64. Canfrán-Duque A., Lin C.S., Goedeke L. et al. Micro-RNAs and high-density lipoprotein metabolism // Arterioscler. Thromb. Vasc. Biol. 2016. V. 36. № 6. P. 1076.
  65. Vickers K.C., Palmisano B.T., Shoucri B.M. et al. Micrornas are transported in plasma and delivered to recipient cells by high-density lipoproteins // Nat. Cell. Biol. 2011. V. 13. № 4. P. 423.
  66. Усынин И.Ф., Дударев А.Н., Городецкая А.Ю. и др. Аполипопротеин A-I стимулирует клеточную пролиферацию в культуре клеток костного мозга // Бюл. экспер. биол. мед. 2017. Т. 164. № 9. С. 285.
  67. Miroshnichenko S., Usynin I., Dudarev A. et al. Apolipoprotein A-I supports MSCs survival under stress conditions // Int. J. Mol. Sci. 2020. V. 21. № 11. P. 4062.
  68. Мокрушников П.В., Дударев А.Н., Ткаченко Т.А. и др. Влияние нативного и окислительно модифицированного аполипопротеина A-I на микровязкость липидного бислоя плазматической мембраны эритроцитов // Биол. мембраны. 2016. Т. 33. № 6. С. 406.
  69. Usynin I.F., Tsyrendorjiev D., Khar'kovski A.V., Panin L.E. High density lipoproteins-3 prevent lipopolysaccharide-induced liver injury in zymosan-pretreated rats / The Immune Consequences of Trauma, Snock and Sepsis // Ed. Faist E. Monduzzi Editore. Bologna, 1997. P. 559.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).