Protective Mechanisms of High-Density Lipoproteins on the Cardiovascular System during Physical Exercise
- Authors: Poteryaeva O.N1, Usynin I.F1
-
Affiliations:
- Federal Research Center of Fundamental and Translational Medicine, Institute of Biochemistry
- Issue: Vol 51, No 5 (2025)
- Pages: 149-162
- Section: ОБЗОРЫ
- URL: https://journals.rcsi.science/0131-1646/article/view/375856
- DOI: https://doi.org/10.7868/S3034615025050138
- ID: 375856
Cite item
Abstract
About the authors
O. N Poteryaeva
Federal Research Center of Fundamental and Translational Medicine, Institute of Biochemistry
Email: Оlga_Poteryaeva@mail.ru
ORCID iD: 0000-0003-1068-2431
Dr. Sci., (Medicine), Leading researcher Novosibirsk, Russian Federation
I. F Usynin
Federal Research Center of Fundamental and Translational Medicine, Institute of Biochemistry
Email: ivan.usynin@yandex.ru
ORCID iD: 0000-0003-1752-9034
Dr. Sci. (Biology), Head of the laboratory Novosibirsk, Russian Federation
References
- Jomard A., Osto E. High density lipoprotein: metabolism, function, and therapeutic potential // Front. Cardiovasc. Med. 2020. V. 7. P. 39.
- Бойцов С.А., Погосова Н.В., Аншелес А.А. и др. Кардиоваскулярная профилактика 2022. Российские национальные рекомендации // Российский кардиологический журнал. 2023. Т. 28. № 5. С. 5452.
- Denimal D. Antioxidant and anti-inflammatory functions of high-density lipoprotein in type 1 and type 2 diabetes // Antioxidants (Basel). 2023. V. 13. № 1. P. 57.
- Kontush A. HDL and reverse remnant-cholesterol transport (RRT): Relevance to cardiovascular disease // Trends Mol. Med. 2020. V. 26. № 12. P. 1086.
- Lui D.T.W., Tan K.C.B. High-density lipoprotein in diabetes: Structural and functional relevance // J. Diabetes Investig. 2024. V. 15. № 7. P. 805.
- Усынин И.Ф., Потеряева О.Н., Русских Г.С. и др. Аполипопротеин А-1 стимулирует секрецию инсулина и матриксных металлопротеиназ островками Лангерганса поджелудочной железы // Биомед. химия. 2018. Т. 64. № 2. С. 195.
- Cochran B.J., Ong K-L., Manandhar B., Rye K-A. High density lipoproteins and diabetes // Cells. 2021. V. 10. № 4. P. 850.
- Robert J., Osto E., von Eckardstein A. The Endothelium is both a target and a barrier of HDL's protective functions // Cells. 2021. V. 10. № 5. P. 1041.
- Потеряева О.Н., Усынин И.Ф. Молекулярные механизмы регуляторного действия липопротеинов высокой плотности на функции эндотелия // Биомед. химия. 2024. Т. 70. № 4. P. 206.
- Xing L., Liu Y., Wang J. et al. High-density lipoprotein and heart failure // Rev. Cardiovasc. Med. 2023. V. 24. № 11. P. 321.
- Pelliccia A., Sharma S., Gati S. et al., om uweiu рабочей группы ESC. Рекомендации ESC по спортивной кардиологии и физическим тренировкам у пациентов с сердечно-сосудистыми заболеваниями 2020 // Российский кардиологический журнал. 2021. Т. 26. № 5. С. 4488.
- Zhao S., Zhong J., Sun C., Zhang J. Effects of aerobic exercise on TC, HDL-C, LDL-C and TG in patients with hyperlipidemia: A protocol of systematic review and meta-analysis // Medicine (Baltimore). 2021. V. 100. № 10. P. e25103.
- Cho K.H. The current status of research on high-density lipoproteins (HDL): A paradigm shifts from HDL quantity to HDL quality and HDL functionality // Int. J. Mol. Sci. 2022. V. 23. № 7. P. 3967.
- Khan H., Khan S., Arif T., Shah I. Effects of aerobic exercise protocol on high density lipoprotein HDL level among young adults; an experimental study // SPARK. 2022. V. 7. № 1. P. 26.
- Braga P.G.S., Freitas F.R., Bachi A.L.L. et al. Regular practice of physical activity improves cholesterol transfers to high-density lipoprotein (HDL) and other HDL metabolic parameters in older adults // Nutrients. 2023. V. 15. № 23. P. 4871.
- Franczyk B., Giuba-Brzózka A., Ciałkowska-Rysz A. et al. The impact of aerobic exercise on HDL quantity and quality: A narrative. Review // Int. J. Mol. Sci. 2023. V. 24. № 5. P. 4653.
- Julian V., Bergsten P., Forslund A. et al. Sedentary time has a stronger impact on metabolic health than moderate to vigorous physical activity in adolescents with obesity: A cross-sectional analysis of the Beta-JUDO study // Pediatr. Obes. 2022. V. 17. № 7. P. e12897.
- Way K.L., Hackett D.A., Baker M.K., Johnson N.A. The effect of regular exercise on insulin sensitivity in type 2 diabetes mellitus: A systematic review and meta analysis // Diabetes Metab. J. 2016. V. 40. № 4. P. 253.
- Smart N.A., Downes D., van der Touw T. et al. The effect of exercise training on blood lipids: A systematic review and meta-analysis // Sports Med. 2025. V. 55. № 1. P. 67.
- Muscella A., Stefano E., Marsigliante S. The effects of exercise training on lipid metabolism and coronary heart disease // Am. J. Physiol. Hear. Circ. Physiol. 2020. V. 319. № 1. P. H76.
- Diniz T.A., Rossi F.E., Fortaleza A.C.S. et al. Changes in HDL-c concentrations after 16 weeks of combined training in postmenopausal women: characteristics of positive and negative responders // Appl. Physiol. Nutr. Metab. 2018. V. 43. № 1. P. 38.
- Панин Л.Е., Маянская Н.Н. Лизосомы: роль в адаптации и восстановлении. Новосибирск: Наука, 1987. 198 с.
- Розуменко А.А., Поляков Л.М. Липидный и эндокринный статус участников продолжительных лыжных переходов в Арктике // Атеросклероз. 2021. Т. 17. № 1. С. 38.
- Потеряева О.Н., Панин Л.Е., Атучина Н.В., Поляков Л.М. Содержание аполипопротеинов A-I, B и E при интенсивной физической нагрузке и в восстановительный период // БЭБИМ. 1998. V. 126. № 12. С. 615.
- Wu L., Soundarapandian M.M., Castoreno A.B. et al. LDL-cholesterol reduction by ANGPTL3 inhibition in mice is dependent on endothelial lipase // Circ Res. 2020. V. 127. № 8. P. 1112.
- Wood G., Taylor E., Ng. V. et al. Estimating the effect of aerobic exercise training on novel lipid biomarkers: A systematic review and multivariate meta-analysis of randomized controlled trials // Sports Med. 2023. V. 53. № 4. P. 871.
- Miyashita M., Eto M., Sasai H. et al. Twelve-week jogging training increases pre-heparin serum lipoprotein lipase concentrations in overweight/obese middle-aged men // J. Atheroscler. Thromb. 2010. V. 17. № 1. P. 21.
- Riedl I., Yoshioka M., Nishida Y. et al. Regulation of skeletal muscle transcriptome in elderly men after 6 weeks of endurance training at lactate threshold intensity // Exp. Gerontol. 2010. V. 45. № 11. P. 896.
- Rahmati-Ahmadabad S., Azarbayjani M.-A., Farzanegi P., Moradi L. High-intensity interval training has a greater effect on reverse cholesterol transport elements compared with moderate-intensity continuous training in obese male rats // Eur. J. Prev. Cardiol. 2019. V. 28. № 7. P. 692.
- Потеряева О.Н., Усынин И.Ф. Дисфункциональные липопротеины высокой плотности при сахарном диабете 2 типа // Пробл. эндокринол. 2022. Т. 68. № 4. С. 69.
- Торховская Т.И., Кудинов В.А., Захарова Т.С. и др. Дисфункциональные липопротеины высокой плотности: роль в атерогенезе и потенциальные мишени для фосфолипидной терапии // Кардиология. 2018. Т. 58. № 3. С. 73.
- Adorni M.P., Ronda N., Bernini F., Zimetti F. High density lipoprotein cholesterol efflux capacity and atherosclerosis in cardiovascular disease: Pathophysiological aspects and pharmacological perspectives // Cells. 2021. V. 10. № 3. P. 574.
- Sirtori C.R., Corsini A., Rusciac M. The role of high-density lipoprotein cholesterol in 2022 // Curr. Atheroscler. Rep. 2022. V. 24. № 5. P. 365.
- Allard-Ratick M.P., Kindya B.R., Khambhati J. et al. HDL: Fact, fiction, or function? HDL cholesterol and cardiovascular risk // Eur. J. Prev. Cardiology. 2021. V. 28. № 2. P. 166.
- Toh R. Assessment of HDL cholesterol removal capacity: Toward clinical application // J. Atheroscler. Thromb. 2019. V. 26. № 2. P. 111.
- Ruiz-Ramie J.J., Barber J.L., Sarzynski M.A. Effects of exercise on HDL functionality // Curr. Opin. Lipidol. 2019. V. 30. № 1. P. 16.
- Wesnigk J., Bruyndonckx L., Hoymans V.Y. et al. Impact of lifestyle intervention on HDL-induced eNOS activation and cholesterol efflux capacity in obese adolescent // Cardiol. Res. Pract. 2016. V. 2016. P. 2820432.
- Hernaez A., TrinidadSoria-Florido M., Castaner O. et al. Leisure time physical activity is associated with improved HDL functionality in high cardiovascular risk individuals: A cohort study // Eur. J. Preven. Cardiology. 2021. V. 28. № 12. P. 1392.
- Cardner M., Yalcinkaya M., Goetze, S. et al. Structure-function relationships of HDL in diabetes and coronary heart disease // JCI Insight. 2020. V. 5. № 1. P. e131491.
- Casella-Filho A., Chagas A.C., Maranhao R.C. et al. Effect of exercise training on plasma levels and functional properties of high-density lipoprotein cholesterol in the metabolic syndrome // Am. J. Cardiol. 2011. V. 107. № 8. P. 1168.
- Boyer M., Mitchell P.L., Poirier D.P. et al. Impact of a 1-year lifestyle modification program on cholesterol efflux capacities in men with abdominal obesity and dyslipidemia // Am. J. Physiol. Endocrinol. Metab. 2018. V. 315. № 4. P. E460.
- Liang M., Pan Y., Zhong T. et al. Effects of aerobic, resistance, and combined exercise on metabolic syndrome parameters and cardiovascular risk factors: A systematic review and network meta-analysis // Rev. Cardiovasc. Med. 2021. V. 22. № 4. P. 1523.
- Ho C-C., Nfor O.N., Chen Y-T. et al. Jogging and weight training associated with increased high-density lipoprotein cholesterol levels in Taiwanese adults // J. Inter. Soc. Sports Nutrition. 2022. V. 19. № 1. P. 664.
- Sowa P.W., Winzer E.B., Hommel J. et al. Impact of different training modalities on high-density lipoprotein function in HFpEF patients: A substudy of the OptimEx trial // ESC Heart Fail. 2022. V. 9. № 5. P. 3019.
- Furuyama F., Koba S., Yokota Y. et al. Effects of cardiac rehabilitation on high density lipoprotein-mediated cholesterol efflux capacity and paraoxonase-1 activity in patients with acute coronary syndrome // J. Atheroscler. Thromb. 2018. V. 25. № 2. P. 153.
- Khan A.A., Mundra P.A., Straznicky N.E. et al. Weight loss and exercise alter the high density lipoprotein lipidome and improve high-density lipoprotein functionality in metabolic syndrome // Arterioscler. Thromb. Vasc. Biol. 2018. V. 38. № 2. P. 438.
- Marques L.R., Diniz T.A., Antunes B.M. et al. Reverse cholesterol transport: molecular mechanisms and the non-medical approach to enhance HDL cholesterol // Front. Physiol. 2018. V. 9. P. 526.
- Ghanbari-Niaki A., Ghanbari-Abarghooi S., Rahbarizadeh F. et al. Heart ABCA1 and PPAR-α genes expression responses in male rats: Effects of high intensity treadmill running training and aqueous extraction of black crataegus-pentaegyna // Res. Cardiovasc. Med. 2013. V. 2. № 4. P. 153.
- Ngo Sock S.E., Chapados N.A., Lavoie J.M. LDL receptor and Pcsk9 transcripts are decreased in liver of ovariectomized rats: effects of exercise training // Horm. Metab. Res. 2014. V. 46. № 8. P. 550.
- Zhang S., Liu Y., Li Q. et al. Exercise improved rat metabolism by raising PPAR-α // Int. J. Sports Med. 2011. V. 32. № 8. P. 568.
- Bougarne N., Weyers B., Desmet S.J. et al. Molecular actions of PPARα in lipid metabolism and inflammation // Endocr. Rev. 2018. V. 39. № 5. P. 760.
- Pagonas N., Vlatsas S., Bauer F. et al. The impact of aerobic and isometric exercise on different measures of dysfunctional high-density lipoprotein in patients with hypertension // Eur. J. Prev. Cardiol. 2019. V. 26. № 12. P. 1301.
- Hansel B., Bonnefont-Rousselot D., Orsoni A. et al. Lifestyle intervention enhances high-density lipoprotein function among patients with metabolic syndrome only at normal low-density lipoprotein cholesterol plasma levels // J. Clin. Lipidol. 2016. V. 10. № 5. P. 1172.
- Välimäki I.A., Vuorimaa T., Ahotupa M. et al. Strenuous physical exercise accelerates the lipid peroxide clearing transport by HDL // Eur. J. Appl. Physiol. 2016. V. 116. № 9. P. 1683.
- Nobecourt E., Jacqueminet S., Hansel B. et al. Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes: relationship to elevated oxidative stress and hyperglycemia // Diabetologia. 2005. V. 48. № 3. P. 529.
- Tiainen S., Luoto R., Ahotupa M. et al. 6-mo aerobic exercise intervention enhances the lipid peroxide transport function of HDL // Free Radic. Res. 2016. V. 50. № 11. P. 1279.
- Ribeiro I.C., Iborra R.T, Neves M.Q. et al. HDL atheroprotection by aerobic exercise training in type 2 diabetes mellitus // Med. Sci. Sports Exerc. 2008. V. 40. № 5. P. 779.
- Jia C., Anderson J.L.C., Gruppen E.G. et al. High-density lipoprotein antiinflammatory capacity and incident cardiovascular events // Circulation. 2021. V. 143. № 20. P. 1935.
- Sang H., Yao S., Zhang L. et al. Walk-run training improves the antiinflammation properties of high-density lipoprotein in patients with metabolic syndrome // J. Clin. Endocrinol. Metab. 2015. V. 100. № 3. P. 870.
- Roberts C.K., Ng C., Hama S. et al. Effect of a short-term diet and exercise intervention on inflammatory/anti-inflammatory properties of HDL in overweight/obese men with cardiovascular risk factors // J. Appl. Physiol. 2006. V. 101. № 6. P. 1727.
- Ромакина В.В., Жиров И.В., Насонова С.Н. и др. МикроРНК как биомаркеры сердечно-сосудистых заболеваний // Кардиология. 2018. Т. 58. № 1. С. 66.
- Riedel S., Radzanowski S., Bowen T.S. Exercise training improves high-density lipoprotein-mediated transcription of proangiogenic microRNA in endothelial cells // Eur. J. Prev. Cardiol. 2015. V. 22. № 7. P. 899.
- Ma Y., Liu H., Wang Y. et al. Roles of physical exercise-induced MiR-126 in cardiovascular health of type 2 diabetes // Diabetol. Metab. Syndr. 2022. V. 14. № 1. P. 169.
- Canfrán-Duque A., Lin C.S., Goedeke L. et al. Micro-RNAs and high-density lipoprotein metabolism // Arterioscler. Thromb. Vasc. Biol. 2016. V. 36. № 6. P. 1076.
- Vickers K.C., Palmisano B.T., Shoucri B.M. et al. Micrornas are transported in plasma and delivered to recipient cells by high-density lipoproteins // Nat. Cell. Biol. 2011. V. 13. № 4. P. 423.
- Усынин И.Ф., Дударев А.Н., Городецкая А.Ю. и др. Аполипопротеин A-I стимулирует клеточную пролиферацию в культуре клеток костного мозга // Бюл. экспер. биол. мед. 2017. Т. 164. № 9. С. 285.
- Miroshnichenko S., Usynin I., Dudarev A. et al. Apolipoprotein A-I supports MSCs survival under stress conditions // Int. J. Mol. Sci. 2020. V. 21. № 11. P. 4062.
- Мокрушников П.В., Дударев А.Н., Ткаченко Т.А. и др. Влияние нативного и окислительно модифицированного аполипопротеина A-I на микровязкость липидного бислоя плазматической мембраны эритроцитов // Биол. мембраны. 2016. Т. 33. № 6. С. 406.
- Usynin I.F., Tsyrendorjiev D., Khar'kovski A.V., Panin L.E. High density lipoproteins-3 prevent lipopolysaccharide-induced liver injury in zymosan-pretreated rats / The Immune Consequences of Trauma, Snock and Sepsis // Ed. Faist E. Monduzzi Editore. Bologna, 1997. P. 559.
Supplementary files

