Application of ultrasound to assess body composition and physiological changes in skeletal muscles

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Ultrasound (US) is widely used in medicine; however, the capabilities of this method go far beyond clinical diagnostics. Over the past half century, the West has been actively developing the direction of using ultrasound to assess body composition, muscle changes under physical activity, assess muscle composition by fiber type, and analyze changes in fat and muscle components of body composition over time. Compaction of sizes, technological evolution of the transmitter, new algorithms for recording and processing the reflected signal contributed to the creation of ultra-light, high-power ultrasound scanners with high resolution, which are synchronized with the smartphone of an ultrasound diagnostic specialist. Among specialists in the field of sports and muscle activity, cheaper ultrasound devices are also becoming widespread, which allow measurements in A- and B-modes in healthy people. This review presents modern areas of ultrasound use outside the field of medical diagnostics and the application of this method in sports physiology and anthropology, as well as the limitations of the method and prospects for its development.

全文:

受限制的访问

作者简介

E. Bondareva

Lopukhin FRCC of Physical-Chemical Medicine of FMBA

编辑信件的主要联系方式.
Email: Bondareva.E@gmail.com
俄罗斯联邦, Moscow

E. Generozov

Lopukhin FRCC of Physical-Chemical Medicine of FMBA

Email: Bondareva.E@gmail.com
俄罗斯联邦, Moscow

A. Arutyunyan

Pirogov Russian National Research Medical University

Email: Bondareva.E@gmail.com
俄罗斯联邦, Moscow

N. Bevzyuk

Pirogov Russian National Research Medical University

Email: Bondareva.E@gmail.com
俄罗斯联邦, Moscow

E. Popova

Gorno-Altaisk State University

Email: Bondareva.E@gmail.com
俄罗斯联邦, Gorno-Altaisk

O. Parfentieva

Lopukhin FRCC of Physical-Chemical Medicine of FMBA

Email: Bondareva.E@gmail.com
俄罗斯联邦, Moscow

参考

  1. Drapkina O.M., Angarsky R.K., Rogozhkina E.A. et al. [Ultrasound-assisted assessment of visceral and subcutaneous adipose tissue thickness. Methodological guidelines] // Cardiovasc. Ther. Prev. 2023. V. 22. № 3. P. 3552.
  2. Suslyaeva N.M., Zavadovskaya V.D., Shulga O.S. et al. [Method for differential diagnosis of abdominal and visceral obesity in overweight patients] // Diagnost. Radiol. Radiother. 2014. № 3. P. 61.
  3. Storchle P., Muller W., Sengeis M. et al. Measurement of mean subcutaneous fat thickness: Eight standardised ultrasound sites compared to 216 randomly selected sites // Sci. Rep. 2018. V. 8. № 1. P. 16268.
  4. Suzuki R., Watanabe S., Hirai Y. et al. Abdominal wall fat index, estimated by ultrasonography, for assessment of the ratio of visceral fat to subcutaneous fat in the abdomen // Am. J. Med. 1993. V. 95. № 3. P. 309.
  5. Wagner D.R., Cain D.L., Clark N.W. Validity and reliability of A-mode ultrasound for body composition assessment of NCAA division I athletes // PLoS One. 2016. V. 11. № 4. P. e0153146.
  6. Schlecht I., Wiggermann P., Behrens G. et al. Reproducibility and validity of ultrasound for the measurement of visceral and subcutaneous adipose tissues // Metabolism. 2014. V. 63. № 12. P. 1512.
  7. Baranauskas M.N., Johnson K.E., Juvancic‐Heltzel J.A. et al. Seven‐site versus three‐site method of body composition using BodyMetrix ultrasound compared to dual‐energy X-ray absorptiometry // Clin. Physiol. Funct. Imaging. 2017. V. 37. № 3. P. 317.
  8. Bazzocchi A., Filonzi G., Ponti F. et al. Accuracy, reproducibility and repeatability of ultrasonography in the assessment of abdominal adiposity // Acad. Radiol. 2011. V. 18. № 9. P. 1133.
  9. Gradmark A.M., Rydh A., Renström F. et al. Computed tomography-based validation of abdominal adiposity measurements from ultrasonography, dual-energy X-ray absorptiometry and anthropometry // Br. J. Nutr. 2010. V. 104. № 4. P. 582.
  10. Johnson K.E., Miller B., Gibson A.L. et al. A comparison of dual‐energy X‐ray absorptiometry, air displacement plethysmography and A‐mode ultrasound to assess body composition in college‐age adults // Clin. Physiol. Funct. Imaging. 2017. V. 37. № 6. P. 646.
  11. Johnson K.E., Miller B., Juvancic‐Heltzel J.A. et al. Agreement between ultrasound and dual‐energy X‐ray absorptiometry in assessing percentage body fat in college‐aged adults // Clin. Physiol. Funct. Imaging. 2014. V. 34. № 6. P. 493.
  12. Kang S., Park J.H., Seo M.W. et al. Validity of the portable ultrasound BodyMetrix™ BX-2000 for measuring body fat percentage // Sustainability. 2020. V. 12. № 21. P. 8786.
  13. Loenneke J.P., Barnes J.T., Wagganer J.D., Pujol T.J. Validity of a portable computer‐based ultrasound system for estimating adipose tissue in female gymnasts // Clin. Physiol. Funct. Imaging. 2014. V. 34. № 5. P. 410.
  14. Pineau J.C., Filliard J.R., Bocquet M. Ultrasound techniques applied to body fat measurement in male and female athletes // J. Athl. Train. 2009. V. 44. № 2. P. 142.
  15. Pineau J.C., Guihard-Costa A.M., Bocquet M. Validation of ultrasound techniques applied to body fat measurement: a comparison between ultrasound techniques, air displacement plethysmography and bioelectrical impedance vs. dual-energy X-ray absorptiometry // Ann. Nutr. Metab. 2007. V. 51. № 5. P. 421.
  16. Ripka W.L., Gewehr P.M., Ulbricht L. Fat percentage evaluation through portable ultrasound in adolescents: A comparison with dual energy X-ray absorptiometry / 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES). 5—7 December, Kuala Lumpur, Malaysia, 2016. P. 146. doi: 10.1109/IECBES.2016.7843432
  17. Ripka W.L., Ulbricht L., Menghin L., Gewehr P.M. Portable A‐mode ultrasound for body composition assessment in adolescents // J. Ultrasound Med. 2016. V. 35. № 4. P. 755.
  18. Schoenfeld B.J., Aragon A.A., Moon J. et al. Comparison of amplitude‐mode ultrasound versus air displacement plethysmography for assessing body composition changes following participation in a structured weight‐loss programme in women // Clin. Physiol. Funct. Imaging. 2017. V. 37. № 6. P. 663.
  19. Smith-Ryan A.E., Fultz S.N., Melvin M.N. et al. Reproducibility and validity of A-mode ultrasound for body composition measurement and classification in overweight and obese men and women // PLoS One. 2014. V. 9. № 3. P. e91750.
  20. Totosy de Zepetnek J.O., Lee J.J., Boateng T. et al. Test–retest reliability and validity of body composition methods in adults // Clin. Physiol. Funct. Imaging. 2021. V. 41. № 5. P. 417.
  21. Aldrich J.E. Basic physics of ultrasound imaging // Crit. Care Med. 2007. V. 35 (5 Suppl). P. S131.
  22. Bachu V.S., Kedda J., Suk I. et al. High-intensity focused ultrasound: A review of mechanisms and clinical applications // Ann. Biomed. Eng. 2021. V. 49. № 9. P. 1975.
  23. Goss S., Johnston R., Dunn F. Comprehensive compilation of empirical ultrasonic properties of mammalian tissues // J. Acoust. Soc. Am. 1978. V. 64. № 2. P. 423.
  24. Barnett S.B., Ter Haar G.R., Ziskin M.C. et al. International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine // Ultrasound Med. Biol. 2000. V. 26. № 3. P. 355.
  25. Dankel S.J., Abe T., Bell Z.W. et al. The impact of ultrasound probe tilt on muscle thickness and echo-intensity: A cross-sectional study // J. Clin. Densitom. 2020. V. 23. № 4. P. 630.
  26. Wagner D.R., Teramoto M., Judd T. et al. Comparison of A-mode and B-mode ultrasound for measurement of subcutaneous fat // Ultrasound Med. Biol. 2020. V. 46. № 4. P. 944.
  27. Lee J.-W., Hong S.-U., Lee J.-H., Park S.-Y. Estimation of validity of A-mode ultrasound for measurements of muscle thickness and muscle quality // Bioengineering. 2024. V. 11. № 2. P. 149.
  28. Ribeiro G., de Aguiar R.A., Penteado R. et al. A-mode ultrasound reliability in fat and muscle thickness measurement // J. Strength Cond. Res. 2022. V. 36. № 6. P. 1610.
  29. Ross R., Aru J., Freeman J. et al. Abdominal adiposity and insulin resistance in obese men // Am. J. Physiol. Endocrinol. Metab. 2002. V. 282. № 3. P. E657.
  30. Markova T.N., Kichigin V.A., Diomidova V.N. et al. [Evaluation of adipose tissue mass with anthropometric and visualization methods; its relation to the components of the metabolic syndrome] // Obes. Metab. 2013. V. 10. № 2. P. 23.
  31. Kuk J.L., Church T.S., Blair S.N., Ross R. Does measurement site for visceral and abdominal subcutaneous adipose tissue alter associations with the metabolic syndrome? // Diabetes Care. 2006. V. 29. № 3. P. 679.
  32. Rolfe E.D.L., Sleigh A., Finucane F.M. et al. Ultrasound measurements of visceral and subcutaneous abdominal thickness to predict abdominal adiposity among older men and women // Obesity. 2010. V. 18. № 3. P. 625.
  33. Bondareva E.A., Parfenteva O.I., Troshina E.A. et al. Agreement between bioimpedance analysis and ultrasound scanning in body composition assessment // Am. J. Hum. Biol. 2024. V. 36. № 4. P. e24001.
  34. Bullen B.A., Quaade F., Olessen E., Lund S.A. Ultrasonic reflections used for measuring subcutaneous fat in humans // Hum. Biol. 1965. V. 37. № 4. P. 375.
  35. Müller W., Lohman T.G., Stewart A.D. et al. Subcutaneous fat patterning in athletes: selection of appropriate sites and standardisation of a novel ultrasound measurement technique: ad hoc working group on body composition, health and performance, under the auspices of the IOC Medical Commission // Br. J. Sports Med. 2016. V. 50. № 1. P. 45.
  36. Kumar A. Non-Invasive estimation of muscle fiber type using ultrasonography // Int. J. Phys. Educ. Sports Health. 2023. V. 10. № 1. P. 89.
  37. Ashir A., Jerban S., Barrère V. et al. Skeletal muscle assessment using quantitative ultrasound: A narrative review // Sensors (Basel). 2023. V. 23. № 10. P. 4763.
  38. Nagae M., Umegaki H., Yoshiko A., Fujita K. Muscle ultrasound and its application to point-of-care ultrasonography: A narrative review // Ann. Med. 2023. V. 55. № 1. P. 190.
  39. Masenko V.L., Kokov A.N., Grigoreva I.I., Krivoshapova K.E. [Radiology methods of the sarcopenia diagnosis] // Res. Pract. Med. J. 2019. V. 6. № 4. P. 127.
  40. Sokolova A.V., Klimova A.V., Dragunov D.O. et al. [Organization of medical care for patients with sarcopenia: methodological recommendations]. M.: GBO “Research Institute for Healthcare Organization and Medical Management of the Moscow City Health Department”, 2023. 49 p.
  41. Cho Y.K., Jung H.N., Kim E.H. et al. Association between sarcopenic obesity and poor muscle quality based on muscle quality map and abdominal computed tomography // Obesity. 2023. V. 31. № 6. P. 1547.
  42. Farsijani S., Santanasto A.J., Miljkovic I. et al. The relationship between intermuscular fat and physical performance is moderated by muscle area in older adults // J. Gerontol. A Biol. Sci. Med. Sci. 2021. V. 76. № 1. P. 115.
  43. Heckmatt J.Z., Pier N., Dubowitz V. Real-time ultrasound imaging of muscles // Muscle Nerve. 1988. V. 11. № 1. P. 56.
  44. Goodpaster B.H., Bergman B.C., Brennan A.M., Sparks L.M. Intermuscular adipose tissue in metabolic disease // Nat. Rev. Endocrinol. 2023. V. 19. № 5. P. 285.
  45. Schmitz G., Dencks S. Ultrasound imaging // Recent Results Cancer Res. 2020. V. 216. P. 135.
  46. Mechelli F., Arendt-Nielsen L., Stokes M., Agyapong-Badu S. Validity of ultrasound imaging versus magnetic resonance imaging for measuring anterior thigh muscle, subcutaneous fat, and fascia thickness // Methods Protoc. 2019. V. 2. № 3. P. 58.
  47. Mirón Mombiela R., Vucetic J., Rossi F., Tagliafico A.S. Ultrasound biomarkers for sarcopenia: What can we tell so far? // Semin. Musculoskelet. Radiol. 2020. V. 24. № 2. P. 181.
  48. Sun X., Croxford A.J., Drinkwater B.W. Continuous monitoring with a permanently installed high-resolution ultrasonic phased array // Struct. Health Monit. 2023. V. 22. № 5. P. 3451.
  49. Sahinis C., Kellis E. Hamstring muscle quality properties using texture analysis of ultrasound images // Ultrasound Med. Biol. 2023. V. 49. № 2. P. 431.
  50. Wong V., Spitz R.W., Bell Z.W. et al. Exercise induced changes in echo intensity within the muscle: A brief review // J. Ultrasound. 2020. V. 23. № 4. P. 457.
  51. Van den Broeck J., Héréus S., Cattrysse E. et al. Reliability of muscle quantity and quality measured with extended-field-of-view ultrasound at nine body sites // Ultrasound Med. Biol. 2023. V. 49. № 7. P. 1544.
  52. Wilkinson T.J., Ashman J., Baker L.A. et al. Quantitative muscle ultrasonography using 2d textural analysis: A novel approach to assess skeletal muscle structure and quality in chronic kidney disease // Ultrason. Imaging. 2021. V. 43. № 3. P. 139.
  53. Yoshiko A., Kaji T., Sugiyama H. et al. Twenty-four months' resistance and endurance training improves muscle size and physical functions but not muscle quality in older adults requiring long-term care // J. Nutr. Health Aging. 2019. V. 23. № 6. P. 564.
  54. Rowe G.S., Blazevich A.J., Haff G.G. pQCT- and ultrasound-based muscle and fat estimate errors after resistance exercise // Med. Sci. Sports Exerc. 2019. V. 51. № 5. P. 1022.
  55. Botton C.E., Umpierre D., Rech A. et al. Effects of resistance training on neuromuscular parameters in elderly with type 2 diabetes mellitus: A randomized clinical trial // Exp. Gerontol. 2018. V. 113. P. 141.
  56. Cadore E.L., González-Izal M., Grazioli R. et al. Effects of Concentric and Eccentric Strength Training on Fatigue Induced by Concentric and Eccentric Exercises // Int. J. Sports Physiol. Perform. 2019. V. 14. № 1. P. 91.
  57. Oranchuk D.J., Stock M.S., Nelson A.R. et al. Variability of regional quadriceps echo intensity in active young men with and without subcutaneous fat correction // Appl. Physiol. Nutr. Metab. 2020. V. 45. № 7. P. 745.
  58. Crawford S.K., Lee K.S., Bashford G.R., Heiderscheit B.C. Spatial-frequency analysis of the anatomical differences in hamstring muscles // Ultrason. Imaging. 2021. V. 43. № 2. P. 100.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Portable devices for ultrasound examinations. A – ultrasound scanner for determining the thickness of subcutaneous fat and muscle thickness (BodyMetrix, IntelaMetrix), Б – ultrasound scanner for examining muscles, bones, lungs and the abdominal region (Vscan Air™ CL, GE HealthCare), В – ultrasound scanner with Doppler function (TE Air, Mindray), Г – ultrasound scanner combining phased and linear array sensors (PAL HD3, Clarius).

下载 (94KB)
3. Fig. 2. Ultrasound protocols of subcutaneous and visceral fat of abdominal localization. Protocol 1 (lying down, B-mode). The sensor is installed in the sagittal plane under the xiphoid process [1]. Protocol 2 (lying down, B-mode). The sensor is located in the sagittal plane on the midline of the abdomen between the navel and the xiphoid process (1/2 distance) [2]. Protocol 3 (lying down, B-mode). The sensor is located in the sagittal plane on the midline of the abdomen 1 cm above the navel [1, 6]. Protocol 4 (lying down, In-mode). The sensor is positioned in the sagittal plane at the navel level, 5 cm laterally from it [1]. Protocol 5 (standing, A-mode). The sensor is positioned in the sagittal plane 3 cm laterally to the navel. Measurements are carried out on the right side of the body [5]. Protocol 6 (lying down, B-mode). The sensor is used to scan along the midline from the xiphoid process to the navel [4]. Protocol 7 (standing, In-mode). The sensor is positioned at the navel level; movement is carried out from the navel to the middle axillary line. Currently, this technique is proposed by the manufacturer, but has not been validated [26].

下载 (120KB)
4. Fig. 3. Forest plot based on the results of comparison of average values ​​of subcutaneous fat thickness obtained by ultrasound (B-mode) and reference method (CT or MRI). Studies were included where the following were indicated: mode, frequency, average values ​​– 4 studies [6, 8, 9, 32].

下载 (159KB)
5. Fig. 4. Protocols for ultrasound assessment of body composition in athletes. A is an ultrasound protocol of subcutaneous fat for calculating body composition, developed by IASMS (International Association of Sciences in Medicine and Sports). The protocol is adapted for B-mode ultrasound [3, 35]. DT – body length, UA – upper abdomen (0.02 DT cm above and to the right of the navel), LA – lower abdomen (0.02 DT cm below and to the right of the navel), ES – erector spinae (0.14 DT above the sciatic protuberance and 0.02 x DT to the right of this point), DT – distal triceps (0.02 DT above the elbow joint), BR – M. Brachioradialis (0.05 DT below the cephalic elevation), LT – lateral thigh, FT – front thigh (0.14 DT above the knee joint), MC – medial calf (0.18 DT above the calcaneus). Б is an ultrasound protocol of subcutaneous fat for calculating body composition developed by ISAK (International Standards for anthropometric assessment). The protocol is adapted for the A-mode ultrasound [5]. 7 points are indicated.

下载 (234KB)
6. Fig. 5. Forest plot based on the results of comparison of average values ​​of the proportion of fat mass obtained by the ultrasound method (A-mode) and the reference method (densitometry - DXA and air-displacement plethysmography - ADP). JP3, JP4, JP7 - Jackson-Pollock formulas for three, four and seven folds, respectively. The studies were included where the mode, frequency, average values ​​and formulas were indicated - 14 studies [5-7, 10-20].

下载 (827KB)

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».