Assessment of Human External Respiration Parameters in Simulated Lunar Gravity and Microgravity
- Autores: Puchkova A.A.1, Katuntsev V.P.1, Shpakov A.V.1, Stavrovskaya D.M.1, Primachenko G.K.1, Baranov V.M.1
-
Afiliações:
- Institute of Biomedical Problems of the RAS
- Edição: Volume 50, Nº 5 (2024)
- Páginas: 29-40
- Seção: Articles
- URL: https://journals.rcsi.science/0131-1646/article/view/270764
- DOI: https://doi.org/10.31857/S0131164624050041
- EDN: https://elibrary.ru/AOOONP
- ID: 270764
Citar
Resumo
The paper presents main results of experiments devoted to studying the influence of simulated microgravity and lunar gravity on the function of external respiration in humans. It has been shown that influence of human exposure to head-down bed rest (a model of the physiological effects of microgravity) and head-up bed rest (a model of the physiological effects of lunar gravity), similar to the influence of a horizontal position (bed rest), leads to a clinically insignificant decrease in the main respiratory parameters in the first hours of these analogue ground-based investigations. Subsequently, during hypokinesia, the marked changes are gradually levelled out. After cessation of experimental exposures, parameters of external respiration function are at the level of background values.
Palavras-chave
Texto integral

Sobre autores
A. Puchkova
Institute of Biomedical Problems of the RAS
Autor responsável pela correspondência
Email: alina.a.puchkova@gmail.com
Rússia, Moscow
V. Katuntsev
Institute of Biomedical Problems of the RAS
Email: alina.a.puchkova@gmail.com
Rússia, Moscow
A. Shpakov
Institute of Biomedical Problems of the RAS
Email: alina.a.puchkova@gmail.com
Rússia, Moscow
D. Stavrovskaya
Institute of Biomedical Problems of the RAS
Email: alina.a.puchkova@gmail.com
Rússia, Moscow
G. Primachenko
Institute of Biomedical Problems of the RAS
Email: alina.a.puchkova@gmail.com
Rússia, Moscow
V. Baranov
Institute of Biomedical Problems of the RAS
Email: alina.a.puchkova@gmail.com
Rússia, Moscow
Bibliografia
- Krittanawong C., Singh N.K., Scheuring R.A. et al. Human health during space travel: state-of-the-art review // Cells. 2023. V. 12. № 1. P. 40.
- Tomsia M., Cieśla J., Śmieszek J. et al. Long-term space missions’ effects on the human organism: what we do know and what requires further research // Front. Physiol. 2024. V. 15. P. 1284644.
- Ghani F., Cheung I., Phillips A. et al. Lung volume, capacity and shape in microgravity: A systematic review and meta-analysis // Acta Astronautica. 2023. V. 212. P. 424.
- Prisk G.K. Microgravity and the respiratory system // Eur. Respire. J. 2014. V. 43. № 5. P. 1459.
- Prisk G.K. Pulmonary challenges of prolonged journeys to space: taking your lungs to the moon // Med. J. Aust. 2019. V. 211. № 6. P. 271.
- Baranov V.M. [Evolution of views on physiology of breathing in microgravity] // Aviakosm. Ekolog. Med. 2023. V. 57. № 5. P. 20.
- Donina Zh.A. Intersystem relationship between respiration and blood circulation // Human Physiology. 2011. V. 37. № 2. P. 229.
- Baranov V.M., Katuntsev V.P., Baranov M.V. et al. [Challenges to space medicine in human exploration of the Moon: risks, adaptation, health, performance] // Ulyanovskiy Mediko-Biologicheski Zhurnal. 2018. № 3. P. 109.
- Baranov M.V., Katuntsev V.P., Shpakov A.V., Baranov V.M. A method of ground simulation of physiological effects of hypogravity on humans // Bull. Exp. Biol. Med. 2016. V. 160. № 3. P. 401.
- Grigoriev A.I., Kozlovskaya I.B. One-year antiorthostatic hypokinesia (ANOG) – physiological model of interplanetary space flight. Moscow: RAS, 2018. 288 p.
- Hargens A.R., Vico L. Long-duration bed rest as an analog to microgravity // J. Appl. Physiol. 2016. V. 120. № 8. P. 891.
- Kozlovskaja I.B., Jarmanova E.N., Egorov A.D. et al. [Development of a Russian system for preventing the adverse effects of weightlessness during long flights to the ISS] // Mezhdunarodnaja kosmicheskaja stancija. Rossijskij segment. Moscow: RAS, 2011. V. 1. P. 63.
- Kameneva M.Yu., Cherniak A.V., Aisanov Z.R. et al. [Spirometry: national guidelines for the testing and interpretation of results] // Pulmonologiya. 2023. V. 33. № 3. P. 307.
- Malaeva V.V., Korenbaum V.I., Pochekutova I.A. et al. [Acoustical evaluation of human lung function during simulation of physiological effects of microgravity and lunar gravity] // Extreme Medicine. 2016. V. 55. № 1. P. 40.
- Segizbaeva M.O., Donina Zh.A., Aleksandrov V.G., Aleksandrova N.P. The mechanisms of compensatory responses of the respiratory system to simulated central hypervolemia in normal subjects // Adv. Exp. Med. Biol. 2015. V. 858. P. 9.
- Donina Zh.A., Baranov V.M., Aleksandrova N.P., Nozdrachev A.D. [Respiration and hemodynamics in modeling the physiological effects of weightlessness]. St. Petersburg: Nauka, 2013. 182 p.
- Katz S., Arish N., Rokach A. et al. The effect of body position on pulmonary function: a systematic review // BMC Pulm. Med. 2018. V. 18. P. 159.
- Yadollahi A., Singh B., Bradley T.D. Investigating the dynamics of supine fluid redistribution within multiple body segments between men and women // Ann. Biomed. Eng. 2015. V. 43. № 9. P. 2131.
- Yamada Y., Yamada M., Yokoyama Y. et al. Differences in lung and lobe volumes between supine and standing positions scanned with conventional and newly developed 320-detector-row upright CT: intra-individual comparison // Respiration. 2020. V. 99. № 7. P. 598.
- Yamada Y., Yamada M., Chubachi S. et al. Comparison of inspiratory and expiratory airway volumes and luminal areas among standing, sitting, and supine positions using upright and conventional CT // Sci. Rep. 2022. V. 12. № 1. P. 21315.
- Segizbaeva M.O., Pogodin M.A., Lavrova I.N. et al. The influence of antiorthostatic effects on respiratory parameters and functional activity of human inspiratory muscles // Human Physiology. 2011. V. 37. № 2. P. 171.
- Grigoriev A.I., Larina I.M. [Water-salt metabolism and functions of the kidneys in humans under continuous hypokinesia] // Nefrologiya. 2001. V. 5. № 3. P. 7.
- Noskov V.B. Adaptation of water-electrolyte metabolism to space flight and its imitation // Human Physiology. 2013. V. 39. № 5. P. 551.
- Montgomery L.D. Body volume changes during simulated microgravity. II: Comparison of horizontal and head-down bed rest // Aviat. Space Environ. Med. 1993. V. 64. № 10. P. 899.
- Whittle R.S., Keller N., Hall E.A. et al. Gravitational dose-response curves for acute cardiovascular hemodynamics and autonomic responses in a tilt paradigm // J. Am. Heart Assoc. 2022. V. 11. № 14. P. e024175.
- Pablo A.S., Jacob B.L., Jacquelyn C.K. et al. Effects of exercise training on pulmonary function in adults with chronic lung disease: a meta-analysis of randomized controlled trials // Arch. Phys. Med. Rehabil. 2018. V. 99. № 12. P. 2561.
- Arbeille P., Provost R., Zuj K., Vincent N. Measurements of jugular, portal, femoral, and calf vein cross-sectional area for the assessment of venous blood redistribution with long duration spaceflight (Vessel Imaging Experiment) // Eur. J. Appl. Physiol. 2015. V. 115. № 10. P. 2099.
- Norsk P. Adaptation of the cardiovascular system to weightlessness: Surprises, paradoxes and implications for deep space missions // Acta Physiol. 2020. V. 228. № 3. P. e13434.
- Elliott A.R., Prisk G.K., Guy H.J., West J.B. Lung volumes during sustained microgravity on Spacelab SLS-1 // J. Appl. Physiol. 1994. V. 77. № 4. P. 2005.
- Elliott A.R., Prisk G.K., Guy H.J. et al. Forced expirations and maximum expiratory flow-volume curves during sustained microgravity on SLS-1 // J. Appl. Physiol. 1996. V. 81. № 1. P. 33.
Arquivos suplementares
