Respiratory sinus arrhythmia: physiological mechanisms and relationship with systemic blood pressure fluctuations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Respiratory sinus arrhythmia (RSA) reflects the functioning of the nervous heart control, predominantly of a parasympathetic nature. The study of RSA mechanisms helps to reveal the physiological patterns of regulation of cardiac activity, and the development of new approaches to its assessment is an urgent medical task. This review will examine experimental approaches that have contributed to the development of modern ideas about autonomic nervous system role in the formation of RSA, as well as the connection between RSA and frequency-matched fluctuations in systemic blood pressure. In addition, we will consider new data on the phase relationships of fluctuations in heart rate and blood pressure in the frequency range of respiratory waves, obtained using wavelet analysis of these physiological signals.

Full Text

Restricted Access

About the authors

O. L. Vinogradova

Institute of Biomedical Problems, Russian Academy of Sciences

Author for correspondence.
Email: microgravity@mail.ru
Russian Federation, Moscow

A. S. Borovik

Institute of Biomedical Problems, Russian Academy of Sciences

Email: microgravity@mail.ru
Russian Federation, Moscow

R. Yu. Zhedyaev

Institute of Biomedical Problems, Russian Academy of Sciences

Email: microgravity@mail.ru
Russian Federation, Moscow

О. S. Tarasova

Institute of Biomedical Problems, Russian Academy of Sciences; Moscow State University

Email: microgravity@mail.ru
Russian Federation, Moscow; Moscow

References

  1. Shaffer F., McCraty R., Zerr C.L. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability // Front. Psychol. 2014. V. 5. P. 1040.
  2. Barman S.M. 2019 Ludwig Lecture: Rhythms in sympathetic nerve activity are a key to understanding neural control of the cardiovascular system // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020. V. 318. № 2. P. R191.
  3. Baevsky R.M., Ivanov G.G., Gavrilushkin A.P. et al. Analysis of heart rate variability when using various electrocardiographic systems (part 1) // Vestnik of Arrhythmology. 2003. V. 24. P. 65.
  4. Schaefer J., Lohff B., Dittmer J.J. Carl Ludwig’s (1847) and Pavel Petrovich Einbrodt’s (1860) physiological research and its implications for modern cardiovascular science: Translator’s notes relating to the English translation of two seminal papers // Prog. Biophys. Mol. Biol. 2014. V. 115. № 2–3. P. 154.
  5. Taylor J.A., Myers C.W., Halliwill J.R. et al. Sympathetic restraint of respiratory sinus arrhythmia: Implications for vagal-cardiac tone assessment in humans // Am. J. Physiol. Hear. Circ. Physiol. 2001. V. 280. № 6. P. H2804.
  6. Giardino N.D., Glenny R.W., Borson S., Chan L. Respiratory sinus arrhythmia is associated with efficiency of pulmonary gas exchange in healthy humans // Am. J. Physiol. Hear. Circ. Physiol. 2003. V. 284. № 5. P. H1585.
  7. Sin P.Y.W., Webber M.R., Galletly D.C. et al. Interactions between heart rate variability and pulmonary gas exchange efficiency in humans // Exp. Physiol. 2010. V. 95. № 7. P. 788.
  8. Ben-Tal A., Shamailov S.S., Paton J.F.R. Evaluating the physiological significance of respiratory sinus arrhythmia: looking beyond ventilation-perfusion efficiency // J. Physiol. 2012. V. 590. № 8. P. 1989.
  9. Elstad M., O’Callaghan E.L., Smith A.J. et al. Cardiorespiratory interactions in humans and animals: rhythms for life // Am. J. Physiol. Heart Circ. Physiol. 2018. V. 315. № 1. P. H6.
  10. Convertino V.A. Mechanisms of inspiration that modulate cardiovascular control: the other side of breathing // J. Appl. Physiol. (1985). 2019. V. 127. № 5. P. 1187.
  11. Slovut D.P., Wenstrom J.C., Moeckel R.B. et al. Respiratory sinus dysrhythmia persists in transplanted human hearts following autonomic blockade // Clin. Exp. Pharmacol. Physiol. 1998. V. 25. № 5. P. 322.
  12. Peyronnet R., Nerbonne J.M., Kohl P. Cardiac mechano-gated ion channels and arrhythmias // Circ. Res. 2016. V. 118. № 2. P. 311.
  13. MacDonald E.A., Quinn T.A. What keeps us ticking? Sinoatrial node mechano-sensitivity: the grandfather clock of cardiac rhythm // Biophys. Rev. 2021. V. 13. № 5. P. 707.
  14. Сooper P.J., Lei M., Cheng L.-X., Kohl P. Selected contribution: axial stretch increases spontaneous pacemaker activity in rabbit isolated sinoatrial node cells // J. Appl. Physiol. 2003. V. 89. № 5. P. 2099.
  15. Blinks J.R. Positive chronotropic effect of increasing right atrial pressure in the isolated mammalian heart // Am. J. Physiol. 1956. V. 186. № 2. P. 299.
  16. Armour J.A. Potential clinical relevance of the “little brain” on the mammalian heart // Exp. Physiol. 2008. V. 93. № 2. P. 165.
  17. Kollai M., Koizumi K. Reciprocal and non-reciprocal action of the vagal and sympathetic nerves innervating the heart // J. Auton. Nerv. Syst. 1979. V. 1. № 1. P. 33.
  18. Costa-Silva J.H., Zoccal D.B., Machado B.H. Glutamatergic antagonism in the NTS decreases post-inspiratory drive and changes phrenic and sympathetic coupling during chemoreflex activation // J. Neurophysiol. 2010. V. 103. № 4. P. 2095.
  19. Rodrigues K.L., Souza J.R., Bazilio D.S. et al. Changes in the autonomic and respiratory patterns in mice submitted to short-term sustained hypoxia // Exp. Physiol. 2021. V. 106. № 3. P. 759.
  20. Eckberg D., Nerhed C., Wallin B. Respiratory modulation of muscle sympathetic and vagal cardiac outflow in man // J. Physiol. 1985. V. 365. P. 181.
  21. St. Croix C.M., Satoh M., Morgan B.J. et al. Role of respiratory motor output in within-breath modulation of muscle sympathetic nerve activity in humans // Circ. Res. 1999. V. 85. № 5. P. 457.
  22. Badra L.J., Cooke W.H., Hoag J.B. et al. Respiratory modulation of human autonomic rhythms // Am. J. Physiol. Hear. Circ. Physiol. 2001. V. 280. № 6. P. H2674.
  23. Ottaviani M.M., Wright L., Dawood T., Macefield V.G. In vivo recordings from the human vagus nerve using ultrasound-guided microneurography // J. Physiol. 2020. V. 598. № 17. P. 3569.
  24. Patros M., Ottaviani M.M., Wright L. et al. Quantification of cardiac and respiratory modulation of axonal activity in the human vagus nerve // J. Physiol. 2022. V. 600. № 13. P. 3113.
  25. Bernardi L., Keller F., Sanders M. et al. Respiratory sinus arrhythmia in the denervated human heart // J. Appl. Physiol. 1989. V. 67. № 4. P. 1447.
  26. Christensen A.H., Nygaard S., Rolid K. et al. Strong evidence for parasympathetic sinoatrial reinnervation after heart transplantation // J. Heart Lung Transplant. 2022. V. 41. № 7. P. 898.
  27. Berger R.D., Saul J.P., Cohen R.J. Transfer function analysis of autonomic regulation. I. Canine atrial rate response // Am. J. Physiol. 1989. V. 256. № 1. Pt. 2. P. H142.
  28. Saul J.P., Berger R.D., Chen M.H., Cohen R.J. Transfer function analysis of autonomic regulation. II. Respiratory sinus arrhythmia // Am. J. Physiol. 1989. V. 256. № 1. Pt. 2. P. H153.
  29. Saul J.P., Berger R.D., Albrecht P. et al. Transfer function analysis of the circulation: unique insights into cardiovascular regulation // Am. J. Physiol. 1991. V. 261. № 4. Pt 2. P. H1231.
  30. Japundzic N., Grichois M.L., Zitoun P. et al. Spectral analysis of blood pressure and heart rate in conscious rats: effects of autonomic blockers // J. Auton. Nerv. Syst. 1990. V. 30. № 2. P. 91.
  31. Golubinskaya V.O., Tarasova O.S., Borovik A.S., Rodionov I.M. [The role of parasympathetic cardiotropic influences in stabilizing blood pressure levels in rats under normal conditions and after sympathectomy] // Vestnik Moskovskogo Universiteta. Seriya 16. Biologiya. 1999. № 3. P. 13.
  32. Negulyaev V.O., Tarasova O.S., Tarasova N.V. et al. Phase synchronization of baroreflex oscillations of blood pressure and pulse interval in rats: the effects of cardiac autonomic blockade and gradual blood loss // Physiol. Meas. 2019. V. 40. № 5. P. 054003.
  33. Clemson P.T., Hoag J.B., Cooke W.H. et al. Beyond the baroreflex: a new measure of autonomic regulation based on the time-frequency assessment of variability, phase coherence and couplings // Front. Netw. Physiol. 2022. V. 2. P. 891604.
  34. Khayutin V.M., Lukoshkova E.V. Heart rate oscillations: spectral analysis // Vestnik of Aritmologii. 2002. № 26. P. 10.
  35. MacDonald E.A., Rose R.A., Quinn T.A. Neurohumoral control of sinoatrial node activity and heart rate: Insight from experimental models and findings from humans // Front. Physiol. 2020. V. 11. P. 170.
  36. Mika D., Fischmeister R. Cyclic nucleotide signaling and pacemaker activity // Prog. Biophys. Mol. Biol. 2021. V. 166. P. 29.
  37. Elghozi J.L., Julien C. Sympathetic control of short-term heart rate variability and its pharmacological modulation // Fundam. Clin. Pharmacol. 2007. V. 21. № 4. P. 337.
  38. Stauss H.M., Anderson E.A., Haynes W.G., Kregel K.C. Frequency response characteristics of sympathetically mediated vasomotor waves in humans // Am. J. Physiol. 1998. V. 274. № 4. P. H1277.
  39. Grisk O., Stauss H.M. Frequency modulation of mesenteric and renal vascular resistance // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002. V. 282. № 5. P. R1468.
  40. Taylor J.A., Eckberg D.L. Fundamental relations between short-term RR interval and arterial pressure oscillations in humans // Circulation. 1996. V. 93. № 8. P. 1527.
  41. Elstad M., Toska K., Chon K.H. et al. Respiratory sinus arrhythmia: Opposite effects on systolic and mean arterial pressure in supine humans // J. Physiol. 2001. V. 536. Pt. 1. P. 251.
  42. Baselli G., Cerutti S., Badilini F. et al. Model for the assessment of heart period and arterial pressure variability interactions and of respiration influences // Med. Biol. Eng. Comput. 1994. V. 32. № 2. P. 143.
  43. Malpas S.C. Neural influences on cardiovascular variability: possibilities and pitfalls // Am. J. Physiol. Heart Circ. Physiol. 2002. V. 282. № 1. P. H6.
  44. Malpas S.C. The rhythmicity of sympathetic nerve activity // Prog. Neurobiol. 1998. V. 56. № 1. P. 65.
  45. Cerutti C., Barres C., Paultre C. Baroreflex modulation of blood pressure and heart rate variabilities in rats: assessment by spectral analysis // Am. J. Physiol. 1994. V. 266. № 5. Pt. 2. P. H1993.
  46. Eckberg D.L., Cooke W.H., Diedrich A. et al. Respiratory modulation of human autonomic function on Earth // J. Physiol. 2016. V. 594. № 19. P. 5611.
  47. Skytioti M., Elstad M. Respiratory sinus arrhythmia is mainly driven by central feedforward mechanisms in healthy humans // Front. Physiol. 2022. V. 13. P. 768465.
  48. Eckberg D.L. The human respiratory gate // J. Physiol. 2003. V. 548. Pt 2. P. 339.
  49. Rothlisberger B.W., Badra L.J., Hoag J.B. et al. Spontaneous “baroreflex sequences” occur as deterministic functions of breathing phase // Clin. Physiol. Funct. Imaging. 2003. V. 23. № 6. P. 307.
  50. Taha B.H., Simon P.M., Dempsey J.A. et al. Respiratory sinus arrhythmia in humans: An obligatory role for vagal feedback from the lungs // J. Appl. Physiol. 1995. V. 78. № 2. P. 638.
  51. Valipour A., Mayse M.L., Peterson A.D. et al. Respiratory sinus arrhythmia attenuation via targeted lung denervation in sheep and humans // Respiration. 2019. V. 98. № 5. P. 434.
  52. Farmer D.G.S., Dutschmann M., Paton J.F.R. et al. Brainstem sources of cardiac vagal tone and respiratory sinus arrhythmia // J. Physiol. 2016. V. 594. № 24. P. 7249.
  53. Menuet C., Connelly A.A., Bassi J.K. et al. PreBötzinger complex neurons drive respiratory modulation of blood pressure and heart rate // Elife. 2020. V. 9. P. e57288.
  54. Barnett W.H., Baekey D.M., Paton J.F.R. et al. Heartbeats entrain breathing via baroreceptor-mediated modulation of expiratory activity // Exp. Physiol. 2021. V. 106. № 5. P. 1181.
  55. Borovik A.S., Orlova E.A., Tomilovskaya E.S. et al. Phase coupling between baroreflex oscillations of blood pressure and heart rate changes in 21-day dry immersion // Front. Physiol. 2020. V. 11. P. 455.
  56. Pikovsky A., Rosenblum M., Kurths J. [Synchronization. A universal concept in nonlinear sciences]. Cambridge, 2002. 411 p.
  57. Kotani K., Takamasu K., Jimbo Y., Yamamoto Y. Postural-induced phase shift of respiratory sinus arrhythmia and blood pressure variations: Insight from respiratory-phase domain analysis // Am. J. Physiol. Hear. Circ. Physiol. 2008. V. 294. № 3. P. H1481.
  58. Lilly J.M., Olhede S.C. Generalized Morse wavelets as a superfamily of analytic wavelets // IEEE Trans. Signal Process. 2012. V. 60. № 11. P. 6036.
  59. Fukuoka Y., Nakagawa Y., Ogoh K. et al. Dynamics of the heart rate response to sinusoidal work in humans: influence of physical activity and age // Clin. Sci. (Lond). 2002. V. 102. № 1. P. 31.
  60. Tarasova O.S., Borovik A.S., Kuznetsov S.Yu. et al. The pattern of changes in physiological parameters in the course of changes in physical exercise intensity// Human Physiology. 2013. V. 39. № 2. P. 171.
  61. Miranda Hurtado M., Steinback C.D., Davenport M.H., Rodriguez-Fernandez M. Increased respiratory modulation of cardiovascular control reflects improved blood pressure regulation in pregnancy // Front. Physiol. 2023. V. 14. P. 1070368.
  62. Sevoz-Couche C., Laborde S. Heart rate variability and slow-paced breathing: when coherence meets resonance // Neurosci. Biobehav. Rev. 2022. V. 135. P. 104576.
  63. Shanks J., Abukar Y., Lever N.A. et al. Reverse re-modelling chronic heart failure by reinstating heart rate variability // Basic Res. Cardiol. 2022. V. 117. № 1. P. 4.
  64. O’Callaghan E.L., Lataro R.M., Roloff E.L. et al. Enhancing respiratory sinus arrhythmia increases cardiac output in rats with left ventricular dysfunction // J. Physiol. 2020. V. 598. № 3. P. 455.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diagram illustrating the mechanisms of formation of respiratory sinus arrhythmia.

Download (210KB)
3. Fig. 2. Dependence of the phase difference of the oscillations of the average blood pressure (BP) and heart rate (HR) per cycle depending on the frequency in a horizontal body position (A) and at 65º orthostasis (B). The figure shows three-dimensional representations of the histograms of the distribution of Δφ – the normalized phase difference of HR and BP: the frequency is plotted along the X axis, the phase difference value is plotted along the Y axis, and the grayscale shows the probability of detecting a given Δφ value at a given frequency (increasing from white to black). The averaged data for a group of 8 healthy young men are shown.

Download (138KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies