Slow negative potentials in the pre-stimulus period in norm and patients with the first episode of schizophrenia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Behavioral data (correct response latency and errors number increase) indicate a significant decrease in the task performance efficiency in patients with the first episode of schizophrenia, compared to the norm. At the same time the SNP 1, 2, 3 amplitudes were found to enhance in the patients group, compared to the norm, which may reflect a compensatory activation of predictive attention and inhibition cortical networks for increase the response efficiency. Intergroup differences in the topography of the SNP1 and SNP2 peaks amplitude suggest “disorganization” of the left hemisphere cognitive control cortical networks at the early stage of schizophrenia. It is assumed that the SNP 1, 2, 3 components can be considered as potentially significant clinically markers of cognitive control disorders in schizophrenia.

Full Text

Restricted Access

About the authors

M. V. Slavutskaya

Moscow State University; Center for Mental Health

Author for correspondence.
Email: mvslav@yandex.ru
Russian Federation, Moscow; Moscow

I. S. Lebedeva

Center for Mental Health

Email: mvslav@yandex.ru
Russian Federation, Moscow

A. А. Fedotova

Moscow State University

Email: mvslav@yandex.ru
Russian Federation, Moscow

D. V. Tikhonov

Center for Mental Health

Email: mvslav@yandex.ru
Russian Federation, Moscow

V. G. Kaleda

Center for Mental Health

Email: mvslav@yandex.ru
Russian Federation, Moscow

References

  1. Walter W.G., Cooper R., Aldridge V.J. et al. Contingent negative variation: An electric sign of sensori-motor association and expectancy in the human brain // Nature. 1964. V. 203. P. 380.
  2. Barret G., Shibasaki H., Neshige R. Cortical potentials preceding voluntary movement: evidence for three periods of preparations in man // EEG Clin. Neurophysiol. 1986. V. 63. № 4. P. 327.
  3. Klostermann W., Kompf D., Heide W. et al. Presaccadic cortical negativity prior to self-placed saccades with and without visual guidance // EEG Clin. Neurophysiol. 1994. V. 91. № 3. P. 219.
  4. Brunia C.H., van Boxtel G.J. Wait and see // Int. J. Psychophysiol. 2001. V. 43. № 1. P. 59.
  5. Slavutskaia M.V., Moiseeva V.V., Shul’govski V.V. [Attention and eye movements in human: psychophysiological concepts, neurophysiological models and EEG correlates] // Zh. Vyssh. Nerv. Deiat. Im. I.P. Pavlova. 2008. V. 58. № 2. P. 131.
  6. Schurger A., Hu P.B., Pak J., Roskies A.L. What is the readiness potential? // Trends Cogn. Sci. 2021. V. 25. № 7. Р. 558.
  7. Aydin M., Carpenelli A.L., Lucia C., Di Russo F. The dominance of anticipatory prefrontal activity in uncued sensory–motor tasks // Sensors. 2022. V. 22. № 17. P. 6559.
  8. Verleger R., Wascher E., Arolt V. et al. Slow EEG potentials (contingent negative variation and post-imperative negative variation) in schizophrenia: their association to the present state and to Parkinsonian medication effects // Clin. Neurophysiol. 1999. V. 110. № 7. P. 1175.
  9. Li Z., Deng W., Liu X. et al. Contingent negative variation in patients with deficit schizophrenia or bipolar I disorder with psychotic features: measurement and correlation with clinical characteristics // Nord J. Psychiatry. 2015. V. 69. № 3. Р. 196.
  10. Donati F.L., Fecchio M., Maestri D. et al. Reduced readiness potential and post-movement beta synchronization reflect self-disorders in early course schizophrenia // Sci. Rep. 2021. V. 11. № 1. P. 15044.
  11. Kveraga K., Ghuman A.S., Bar M. Top-down predictions in the cognitive brain // Brain Cogn. 2007. V. 65. № 2. P. 145.
  12. Ford J.M., Mathalon D.H. Anticipating the future: Automatic prediction failures in schizophrenia // J. Psychophysiol. 2012. V. 83. № 2. P. 232.
  13. Friston K., Brown H.R., Siemerkus J., Stephan K.E. The dysconnection hypothesis // Schizophr. Res. 2016. V. 176. № 2-3. P. 83.
  14. Krebs M.O., Bourdel M.C., Cherif Z.R. et al. Deficit of inhibition motor control in untreated patients with schizophrenia: further support from visually guided saccade paradigms // Psychiatry Res. 2010. V. 179. № 3. P. 279.
  15. Hughes M.E., Fulham W.R., Johnston P.J., Michie P.T. Stop-signal response inhibition in schizophrenia: Behavioural, event-related potential and functional neuroimaging data // Biol. Psychol. 2012. V. 89. № 1. P. 220.
  16. Sommer M.A., Wurts R.H. Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus // J. Neurophysiol. 2001. V. 85. № 4. P. 1673.
  17. Gnezditsky V.V. [Evoked brain potentials in clinical practice]. M.: “MED press-inform”, 2003. 246 p.
  18. Perlstein W.M., Dixit N.K., Carter C.S. et al. Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia // Biol. Psychiatry. 2003. V. 53. № 1. P. 25.
  19. Camchong J., Dyckman K.A., Austin B.P. et al. Common neural circuitry supporting volitional saccades and its disruption in schizophrenia patients and relatives // Biol. Psychiatry. 2008. V. 64. № 12. P. 1042.
  20. Caldani S., Bucci M.P., Lamy J.C. et al. Saccadic eye movements as markers of schizophrenia spectrum: Exploration in at-risk mental states // Schizophr. Res. 2017. V. 181. P. 30.
  21. Nestor P.G., Faux S.F, McCarley R.W. et al. Attention cues in chronic schizophrenia. Abnormal disengagement of attention // J. Abnorm. Psychol. 1992. V. 101. № 4. P. 682.
  22. Lijffijt M., Lane S.D., Meier S.L. et al. P50, N100, and P200 sensory gating: Relationships with behavioral ibhibition, attention, and working memory // Psychophysiol. 2009. V. 46. № 5. P. 1059.
  23. Spencer K.M., Nestor P.G., Valdman O. et al. Enhanced facilitation of spatial attention in schizophrenia // Neuropsychology. 2011. V. 25. № 1. P. 76.
  24. Thakkar N.K., Schal J.D. S., S. Disrupted saccadic corollary discharge in schizophrenia // J. Neurosci. 2015. V. 35. № 27. P. 9935.
  25. Sklar A.L., Coffman B.A., Salisbury D.F. Localization of early-stage visual processing deficits at schizophrenia spectrum illness onset using magnetoencephalograph // Schizophr. Bull. 2020. V. 46. № 4. P. 955.
  26. Gold J.M., Luck S.J. Working memory in people with schizophrenia // Curr. Top. Behav. Neurosci. 2023. V. 63. P. 137.
  27. Kuo B.C., Stokes M.G., Nobre A.C. Attention modulates maintenance of representations in visual short-term memory // J. Cogn. Neurosci. 2012. V. 24. № 1. P. 51.
  28. Di Russo F., Lucci G., Sulpizio V. et al. Spatiotemporal brain mapping during preparation, perception, and action // NeuroImage. 2016. V. 126. P. 1.
  29. Van der Stigchel S., Heslenfeld D.J., Theeuwes J. An ERP study of preparatory and inhibitory mechanisms in a cued saccade task // Brain Res. 2006. V. 1105. № 1. P. 32.
  30. Kanunikov I.E. Contingent negative variation (CNV) as an electrophysiological indicator of mental activity // Human Physiology. 1980. V. 6. № 3. P. 505.
  31. Klein C., Rockstroh B., Cohen R., Berg P. Contongent negative variation (CNV) and determinants of the post-imperative negative variation (PINV) in shizophrenic patients and healthy controls // Schizophr. Res. 1996. V. 21. № 2. P. 97.
  32. Tseng Ph., Chang Ch., Chiau H. et al. The dorsal attentional system in oculomotor learning of predictive information // Front. Hum. Neurosi. 2013. V. 7. P. 404.
  33. Klein C., Heinks T., Andersen B. et al. Impaired modulation of the saccadic contingent negative variation preceding antisaccades in shizophrenia // Biol. Psychiatry. 2000. V. 47. № 11. P. 978.
  34. Moran M.J., Thaker G.K., Laporte D.J. et al. Covert visual attention in shizophrenia spectrum personality disorded subjects: visuaspatial cuing and alerting effects // J. Psychiatr. Res. 1996. V. 30. № 4. P. 261.
  35. Gallinat J., Mulert Ch., Bajbouj M. et al. Frontal and temporal dysfunction of auditory stimulus processing in schizophrenia // NeuroImage. 2002. V. 17. № 1. P. 110.
  36. Vita A., De Peri L., Deste G., Sacchetti E. Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies // Transl. Psychiatry. 2012. V. 2. № 11. P. e190.
  37. Gerretsen Ph., Menona M., Mamo M. Impaired insight into illness and cognitive insight in schizophrenia spectrum disorders: Resting state functional connectivity // Schizophr. Res. 2014. V. 160. № 1-2. P. 43.
  38. Zhu F., Liu F., Guo W. et al. Disrupted asymmetry of inter- and intra-hemispheric functional connectivity in patients with drug-naive, first-episode schizophrenia and their unaffected siblings // EBioMedicine. 2018. V. 36. P. 429.
  39. Gomes C.M., Delinte A., Vaquero E. et al. Current source density analyses of CNV during temporal GAP paradigm // Brain Topogr. 2001. V. 13. № 3. P. 149.
  40. Yamaguchi S., Tsuchiya H., Kobayashi S. Electroencephalographic activity associated with shifts of visuospatial attention // Brain. 1994. V. 117. Pt. 3. P. 553.
  41. Slavutskaya M.V., Kirenskaya A.V., Novototskii-Vlasov V.Yu. et al. Slow cortical potentials preceeding visually guided saccades in schizophrenics // Human Physiology. 2005. V. 31. № 5. P. 545.
  42. Osborne K.J., Kraus B., Lam P.H et al. Contingent negative variation blunting and psychomotor dysfunction in schizophrenia: A systematic review // Schizophr. Bull. 2020. V. 46. № 5. P. 1144.
  43. Jansma J.M., Ramsey N.F., van der Wee N.J.A., Kahn R.S. Working memory capacity in schizophrenia: a parametric fMRI study // Schizophr. Res. 2004. V. 68. № 2–3. P. 159.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental scheme of "Go/NoGo delay". CFS — central fixation stimulus, SS — signal stimulus, TS — target stimuli ("Go" or "NoGo").

Download (62KB)
3. Fig. 2. Slow averaged potentials of the electroencephalogram (EEG) in the pre-stimulus period (–1056 ms) of a left saccade (A) and fragments of EEG mapping of their amplitude in the group of healthy subjects and in the group of patients with the first episode of schizophrenia (B). A — EEG averaging in healthy subjects (solid line, n = 279) and patients (dotted line, n = 281). The arrow indicates the inclusion of target stimuli (TS) (averaging trigger, 0 ms). B — fragment of EEG mapping of the amplitude of slow potentials in the pre-stimulus interval in the normal group (1) and in the patient group (2). The mapping step is 32 ms. 1 – red foci in the interval from –992 to 800 ms – MNP1 component, from –608 to –384 – MNP2 component, from –224 to 0 ms – MNP3 component. 2 – red foci in the interval from –960 to –608 ms – MNP1 component, from –448 to –288 – MNP2 component, from –128 to 0 – MNP3 component.

Download (672KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies