Emotional intelligence and specificity of brain cortical activity in coronary heart disease

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Testing the components of emotional intelligence (EI) in patients with coronary heart disease (CHD) showed that they are more likely to react to emotionally significant situations than to express their emotions. The most pronounced influence on the frequency-spatial organization of brain activity, mainly in the θ1-, α2- and β1-ranges, is induced by such EI components as the expression of positive emotions, the use of emotions in decision-making and empathy. An increase in self-assessment of positive expression is associated with an increase in the power of the β1-rhythm in the parieto-occipital cortex with the dominance of the left hemisphere and an increase in the θ1 not only in these areas, but also in the posterofrontal cortical sites. The increase in empathy is accompanied by a decrease in the power of the β1-rhythm, mainly in the temporal cortex of the left hemisphere. Gender differences were found in the association of self-assessment of negative expression and the power of θ- and β-oscillations with greater involvement of the left frontal areas in women. The identified features of the relationship between EI and EEG parameters may be a consequence of the reorganization of cortical activity in patients with coronary heart disease, which develops as a result of chronic cerebral ischemia.

Толық мәтін

Рұқсат жабық

Авторлар туралы

О. Razumnikova

Novosibirsk State Technical University

Хат алмасуға жауапты Автор.
Email: razoum@mail.ru
Ресей, Novosibirsk

I. Tarasova

Research Institute for Complex Issues of Cardiovascular Diseases

Email: razoum@mail.ru
Ресей, Kemerovo

О. Trubnikova

Research Institute for Complex Issues of Cardiovascular Diseases

Email: razoum@mail.ru
Ресей, Kemerovo

Әдебиет тізімі

  1. Pimple P., Shah A.J., Rooks C. et al. Angina and mental stress-induced myocardial ischemia // J. Psychosom. Res. 2015. V. 78. № 5. P. 433.
  2. Potijk M.R., Janszky I., Reijneveld S.A., Falkstedt D. Risk of coronary heart disease in men with poor emotional control: A prospective study // Psychosom. Med. 2016. V. 78. № 1. P. 60.
  3. Sirois B.C., Burg M.M. Negative emotion and coronary heart disease: A review // Behav. Modif. 2003. V. 27. № 1. P. 83.
  4. Timmermans I., Versteeg H., Duijndam S. et al. Social inhibition and emotional distress in patients with coronary artery disease: The Type D personality construct // J. Health Psychol. 2019. V. 24. № 14. P. 1929.
  5. Côté S., Gyurak A., Levenson R.W. The ability to regulate emotion is associated with greater well-being, income, and socioeconomic status // Emotion. 2010. V. 10. № 6. P. 923.
  6. Eisenstadt M., Liverpool S., Infanti E. et al. Mobile Apps that promote emotion regulation, positive mental health, and well-being in the general population: Systematic review and meta-analysis // JMIR Ment. Health. 2021. V. 8. № 11. P. e31170.
  7. Extremera N., Rey L. The moderator role of emotion regulation ability in the link between stress and well-being // Front. Psychol. 2015. V. 6. P. 1632.
  8. Extremera N., Sánchez-Álvarez N., Rey L. Pathways between ability Emotional Intelligence and subjective well-being: Bridging links through cognitive emotion regulation strategies // Sustainability. 2020. V. 12. № 5. P. 2111.
  9. Fernández-Abascal E.G., Martín-Díaz M.D. Dimensions of emotional intelligence related to physical and mental health and to health behaviors // Front. Psychol. 2015. V. 6. P. 317.
  10. Puente-Martínez A., Páez D., Ubillos-Landa S., Da Costa-Dutra S. Examining the structure of negative affect regulation and its association with hedonic and psychological wellbeing // Front. Psychol. 2018. V. 9. P. 1592.
  11. Checa P., Fernández-Berrocal P. Cognitive control and emotional intelligence: Effect of the emotional content of the task. Brief Reports // Front. Psychol. 2019. V. 10. P. 195.
  12. Petrides K.V., Mikolajczak M., Mavroveli S. et al. Developments in trait emotional intelligence research // Emot. Rev. 2016. V. 8. № 4. P. 335.
  13. Mayer J.D., Caruso D.R., Salovey P. The ability model of emotional intelligence: Principles and updates // Emot. Rev. 2016. V. 8. № 4. P. 290.
  14. Schutte N.S., Malouff J.M., Thorsteinsson E.B. et al. A meta-analytic investigation of the relationship between emotional intelligence and health // Pers. Individ. Differ. 2007. V. 42. № 6. P. 921.
  15. Razumnikova O., Prokhorova L., Yashanina A., Asanova N. Relationships between quality of life and emotional personality traits: roles of gender and aging / 31st Conference of the EHPS. 29.08-02.09.2017, Padova, Italy, 2017. P. 188.
  16. Razumnikova O.M., Tarasova I.V., Trubnikova O.A. [Features of the relationship between indicators of emotional status and self-assessment of quality of life in coronary heart disease] // Voprosy Psychologii. 2022. № 3. P. 104.
  17. Barrett-Connor E., Suarez L., Khaw K. et al. Ischemic heart disease risk factors after age 50 // J. Chronic Dis. 1984. V. 37. № 12. P. 903.
  18. North B.J., Sinclair D.A. The intersection between aging and cardiovascular disease // Circ. Res. 2012. V. 110. № 8. P. 1097.
  19. Blanchard-Fields F., Coats A.H. The experience of anger and sadness in everyday problems impacts age differences in emotion regulation // Dev. Psychol. 2008 V. 44. № 6. P. 1547.
  20. Kharamin S., Malekzadeh M., Aria A. et al. Emotional processing in patients with ischemic heart diseases // Open Access Maced. J. Med. Sci. 2018. V. 6. № 9. P. 1627.
  21. Teachman B.A. Aging and negative affect: The rise and fall and rise of anxiety and depression symptoms // Psychol. Aging. 2006. V. 21. № 1. P. 201.
  22. Cotter D.L., Walters S.M., Fonseca C. et al. Aging network. Aging and positive mood: Longitudinal neurobiological and cognitive correlates // Am. J. Geriatr. Psychiatry. 2020. V. 28. № 9. P. 946.
  23. Kunzmann U., Little T.D., Smith J. Is age-related stability of subjective well-being a paradox? Crosssectional and longitudinal evidence from the Berlin Aging Study // Psychol. Aging. 2000. V. 15. № 3. P. 511.
  24. Stanley J.T., Isaacowitz D.M. Age-related differences in profiles of mood-change trajectories // Dev. Psychol. 2011. V. 47. № 2. P. 318.
  25. Isaacowitz D.M., Livingstone K.M., Castro V.L. Aging and emotions: experience, regulation, and perception // Curr. Opin. Psychol. 2017. V. 17. P. 79.
  26. Nashiro K., Sakaki M., Mather M. Age differences in brain activity during emotion processing: reflections of age-related decline or increased emotion regulation? // Gerontology. 2012. V. 58. № 2. P. 156.
  27. MacCormack J.K., Stein A.G., Kang J. et al. Affect in the aging brain: A neuroimaging meta-analysis of older vs. younger adult affective experience and perception // Affect Sci. 2020. V. 1. № 3. P. 128.
  28. Ochsner K.N., Silvers J.A., Buhle J.T. Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion // Ann. N.Y. Acad. Sci. 2012. V. 1251. P. E1.
  29. Paschke L.M., Dörfel D., Steimke R. et al. Individual differences in self-reported self-control predict successful emotion regulation // Soc. Cogn. Affect Neurosci. 2016. V. 11. № 8. P. 1193.
  30. Kim S.H., Hamann S. Neural correlates of positive and negative emotion regulation // J. Cogn. Neurosci. 2007. V. 19. № 5. P. 776.
  31. Razumnikova O.M. [Patterns of brain aging and methods of activating its compensatory resources] // Uspekhi Fiziol. Sci. 2015. V. 46. № 2. P. 3.
  32. Bakaev M.А., Razumnikova O.М. [Сognitive reserves: prefrontal cortex or information load?] // Adv. Gerontol. 2021. V. 34. № 2. P. 202.
  33. Morcom A.M., Henson R.N.A. Increased prefrontal activity with aging reflects nonspecific neural responses rather than compensation // J. Neurosci. 2018. V. 38. № 33. P. 7303.
  34. Zanto T.P., Gazzaley A. Aging of the frontal lobe // Handb. Clin. Neurol. 2019. V. 163. P. 369.
  35. Trubnikova O.A., Tarasova I.V., Mamontova A.S. et al. [Structure of cognitive disorders and dynamics of bioelectric activity of the brain in patients after direct myocardial revascularization] // Russ. J. Cardiol. 2014. V. 8. № 112. P. 57.
  36. Elise B., Eynde S.V., Egée N. et al. Are trait emotional competencies and heart rate variability linked to mental health of coronary heart disease patients? // Psychol. Rep. 2021. V. 124. № 1. P. 23.
  37. Vlachaki C., Maridaki Kassotaki K. Coronary heart disease and emotional intelligence // Glob. J. Health Sci. 2013. V. 5. № 6. P. 156.
  38. Tarasova I.V., Trubnikova O.A., Barbarash O.L. EEG and Clinical factors associated with mild cognitive impairment in coronary artery disease patients // Dement. Geriatr. Cogn. Disord. 2018. V. 46. № 5-6. P. 275.
  39. Venkatesh S., Fischer C. Cognitive factors associated with emotional intelligence // Int. Psychogeriatr. 2019. V. 31. № 9. P. 1229.
  40. Tarasova I.V., Trubnikova O.A., Kukhareva I.N. et al. The influence of preoperative cognitive impairmenton the changes in the brain’s electrical activityin patients 1 year after coronary artery bypass grafting // Creative Сardiology. 2018. V. 12. № 4. P. 304.
  41. Knyazev G.G., Mitrofanova L.G., Razumnikova O.M., Barchard K. [Adaptation of the Russian version of the “Emotional Intelligence Questionnaire” by K. Barchard] // Psychol. J. 2012. V. 33. № 4. P. 112.
  42. Sharma P., Verma M.K., Sachan A., Verma A. Role of emotion and feelings in coronary heart diseases among males & females: A comparative study // J. Positive School Psychol. 2022. V. 6. № 2. P. 5296.
  43. Luque B., Castillo-Mayén R., Cuadrado E. et al. The role of emotional regulation and affective balance on health perception in cardiovascular disease patients according to sex differences // J. Clin. Med. 2020. V. 9. № 10. P. 3165.
  44. Betti V., Della Penna S., de Pasquale F., Corbetta M. Spontaneous beta band rhythms in the predictive coding of natural stimuli // Neuroscientist. 2021. V. 27. № 2. P. 184.
  45. Summers J.K., Vivian D.N. Ecotherapy — A forgotten ecosystem service: A review // Front. Psychol. 2018. V. 9. P. 1389.
  46. Jun S., Joo Y., Sim Y. et al. Fronto-parietal single-trial brain connectivity benefits successful memory recognition // Transl. Neurosci. 2022. V. 13. № 1. P. 506.
  47. Dave S., VanHaerents S., Voss J.L. Cerebellar theta and beta Noninvasive stimulation rhythms differentially influence episodic memory versus semantic prediction // J. Neurosci. 2020. V. 40. № 38. P. 7300.
  48. Cavanagh J.F., Frank M.J. Frontal theta as a mechanism for cognitive control // Trends Cogn. Sci. 2014. V. 18. № 8. P. 414.
  49. Lapomarda G., Valer S., Job R., Grecucci A. Built to last: Theta and delta changes in resting-state EEG activity after regulating emotions // Brain Behav. 2022. V. 12. № 6. P. e2597.
  50. Razumnikova O., Khoroshavtseva E., Yashanina A. Association between emotional intelligence and hemispheric activity asymmetry // KnE Life Sciences. 2018. V. 4. № 8. P. 754.
  51. Rogala J., Kublik E., Krauz R. et al. Resting-state EEG activity predicts frontoparietal network reconfiguration and improved attentional performance // Sci. Rep. 2020. V. 10. № 1. P. 5064.
  52. Bajaj S., Killgore W.D.S. Association between emotional intelligence and effective brain connectome: A large-scale spectral DCM study // NeuroImage. 2021. V. 229. P. 117750.
  53. Gündem D., Potočnik J., De Winter F.L. et al. The neurobiological basis of affect is consistent with psychological construction theory and shares a common neural basis across emotional categories // Commun. Biol. 2022. V. 5. № 1. P. 1354.
  54. Phan K.L., Wager T., Taylor S.F., Liberzon I. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI // Neuroimage. 2002. V. 16. № 2. P. 331.
  55. Saarimäki H., Ejtehadian L.F., Glerean E. et al. Distributed affective space represents multiple emotion categories across the human brain // Soc. Cogn. Affect. Neurosci. 2018. V. 13. № 5. P. 471.
  56. Light S.N. The heterogeneity of empathy: Possible treatment for anhedonia? // Front. Psychiatry. 2019. V. 10. P. 185.
  57. Razumnikova O.M., Tarasova I.V., Trubnikova O.A. [Features of the connection between indicators of emotional status and self-assessment of quality of life in coronary heart disease] // Voprosy Psychologii. 2022. № 3. P. 104.
  58. Friedman N.P., Robbins T.W. The role of prefrontal cortex in cognitive control and executive function // Neuropsychopharmacol. 2022. V. 47. № 1. P. 72.
  59. Klimesch W., Schack B., Sauseng P. The Functional Significance of Theta and Upper Alpha Oscillations // Exp. Psychol. 2005. V. 52. № 2. P. 99.
  60. Ling G., Lee I., Guimond S. et al. Individual variation in brain network topology is linked to emotional intelligence // NeuroImage. 2019. V. 189. P. 214.
  61. Lerner J.S., Li Y., Valdesolo P., Kassam K.S. Emotion and decision making // Annu. Rev. Psychol. 2015. V. 66. P. 799.
  62. Venkatesh S., Fischer C. Cognitive factors associated with emotional intelligence // Int. Psychogeriatr. 2019. V. 31. № 9. P. 1229.
  63. Wuthrich V.M., Rapee R.M., Draper B. et al. Reducing risk factors for cognitive decline through psychological interventions: a pilot randomized controlled trial // Int. Psychogeriatr. 2019. V. 31. № 7. P. 1015.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Indicators of seven scales of emotional intelligence. EI1 – positive expressiveness, EI2 – negative expressiveness, EI3 – attention to emotions, EI4 – decision making based on emotions, EI5 – empathy for joy, EI6 – empathy for misfortune and EI7 – empathy.

Жүктеу (78KB)
3. Fig. 2. Correlation maps of EI components and EEG power. EI1 (positive expressiveness) and 1 (A) or 1 (B) and EI7 (empathy) and 1 (C); dark circles indicate leads for which a positive correlation was found, empty circles indicate a negative one; their size corresponds to the stability of the connection: 0.01 < p < 0.1.

Жүктеу (116KB)
4. Fig. 3. Relationship between EI1 indicators (positive expressiveness) and the power of the θ1 rhythm in lead TP7.

Жүктеу (94KB)
5. Fig. 4. Negative connections between EI2 (negative expressiveness) and the power of the 1- and 1-rhythm in women (A) and 2 in men (B). For other designations, see Fig. 2.

Жүктеу (119KB)

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>