Risk of Thrombosis and Mechanisms of Activation of Hemostasis in Divers after Diving

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The risks of decompression sickness and its complications in professional divers and amateur divers with various methods of diving in real and simulated conditions are considered. The pathogenesis of disorders of the plasma and vascular hemostasis system under the influence of environmental factors on the body during various types of dives is discussed. Generalization of the research results showed that the mechanisms of activation of thrombosis under this influence are complex and are caused by microbubble-mediated platelet activation as well as by development of endothelial dysfunction, oxidative and psychophysiological stress. The study of hemostasis parameters in professional and amateur divers can be one of the main methods of assessing the risk of its development. The considered means of preventing thrombosis during diving and decompression, according to the results of the works included in the review, are quite effective.

Sobre autores

D. Kuzichkin

Institute of Biomedical Problems of the RAS

Email: andre_markine@mail.ru
Russia, Moscow

A. Markin

Institute of Biomedical Problems of the RAS

Autor responsável pela correspondência
Email: andre_markine@mail.ru
Russia, Moscow

O. Zhuravleva

Institute of Biomedical Problems of the RAS

Email: andre_markine@mail.ru
Russia, Moscow

Bibliografia

  1. Levett D.Z., Millar I.L. Bubble trouble: a review of diving physiology and disease // Postgrad. Med. J. 2008. V. 84. № 997. P. 571.
  2. Spira A. Diving and marine medicine review part II: diving diseases // J. Travel Med. 1999. V. 6. № 3. P. 180.
  3. Beale P., Kitchen L., Graf W.R., Fenton M.E. Abdominal decompression illness following repetitive diving: a case report and review of the literature // Undersea Hyperb. Med. 2019. V. 46. № 2. P. 211.
  4. Vann R.D., Butler F.K., Mitchell S.J., Moon R.E. Decompression illness // Lancet. 2011. V. 377. № 9760. P. 153.
  5. Pollock N.W., Buteau D. Updates in decompression illness // Emerg. Med. Clin. North Am. 2017. V. 35. № 2. P. 301.
  6. Kohshi K., Denoble P.J., Tamaki H. et al. Decompression illness in repetitive breath-hold diving: why ischemic lesions involve the brain? // Front. Physiol. 2021. V. 12. P. 711850.
  7. Kohshi K., Tamaki H., Lemaître F. et al. Diving-related disorders in commercial breath-hold divers (Ama) of Japan // Diving Hyperb. Med. 2021. V. 51. № 2. P. 199.
  8. Vann R.D., Denoble P.J., Howle L.E. et al. Resolution and severity in decompression illness // Aviat. Space Environ. Med. 2009. V. 80. № 5. P. 466.
  9. Alcock J., Brainard A.H. Gene-environment mismatch in decompression sickness and air embolism // Med. Hypotheses. 2010. V. 75. № 2. P. 199.
  10. Beuster W., van Laak U. Severe decompression sickness in divers // Wien. Med. Wochenschr. 1999. V. 151. № 5–6. P. 111.
  11. Eichhorn L., Leyk D. Diving medicine in clinical practice // Dtsch. Ärzteblatt Int. 2015. V. 112. № 9. P. 147.
  12. Leffler C.T. Effect of ambient temperature on the risk of decompression sickness in surface decompression divers // Aviat. Space Environ. Med. 2001. V. 72. № 5. P. 477.
  13. Bosco G., Yang Z.J., Savini F. et al. Environmental stress on diving-induced platelet activation // Undersea Hyperb. Med. 2001. V. 28. № 4. P. 207.
  14. Madden L.A., Laden G. Gas bubbles may not be the underlying cause of decompression illness − The at-depth endothelial dysfunction hypothesis // Med. Hypotheses. 2009. V. 72. № 4. P. 389.
  15. Lambrechts K., Pontier J.M., Balestra C. et al. Effect of a single, open-sea, air scuba dive on human micro- and macrovascular function // Eur. J. Appl. Physiol. 2013. V. 113. № 10. P. 2637.
  16. Toyota S., Nagata S., Yoshino S. et al. Mesenteric venous thrombosis as a rare complication of decompression sickness // Surg. Case Rep. 2020. V. 6. № 1. P. 24.
  17. Gertler S.L., Stein J., Simon T., Miyai K. Mesenteric venous thrombosis as sole complication of decompression sickness // Dig. Dis. Sci. 1984. V. 29. № 1. P. 91.
  18. Kassar E.V., Bass J.R., Douglas E., Speake M.R. Portal and mesenteric vein thrombosis associated with decompression sickness in a 48-year-old deep sea self-contained underwater breathing apparatus (SCUBA) diver // Am. J. Case Rep. 2022. V. 23. P. e935473.
  19. Boussuges A., Succo E., Juhan-Vague I., Sainty J.M. Activation of coagulation in decompression illness // Aviat. Space Environ. Med. 1998. V. 69. № 2. P. 129.
  20. Gempp E., Morin J., Louge P., Blatteau J.E. Reliability of plasma D-dimers for predicting severe neurological decompression sickness in scuba divers // Aviat. Space Environ. Med. 2012. V. 83. № 8. P. 771.
  21. Bolboli L., Khodadadi D., Azimi F. Can Diving Depth Affect Blood Hemostasis System Responses? // Sport Physiology. 2019. V. 11. № 41. P. 123.
  22. Pontier J.M., Jimenez C., Blatteau J.E. Blood platelet count and bubble formation after a dive to 30 msw for 30 min // Aviat. Space Environ. Med. 2008. V. 79. № 12. P. 1096.
  23. Lambrechts K., Balestra C., Theron M. et al. Venous gas emboli are involved in post-dive macro, but not microvascular dysfunction // Eur. J. Appl. Physiol. 2017. V. 117. № 2. P. 335.
  24. Pontier J.M., Gempp E., Ignatescu M. Blood platelet-derived microparticles release and bubble formation after an open-sea air dive // Appl. Physiol. Nutr. Metab. 2012. V. 37. № 5. P. 888.
  25. Moon R.E. Hyperbaric oxygen treatment for decompression sickness // Undersea Hyperb. Med. 2014. V. 41. № 2. P. 151.
  26. Barratt D.M., Harch P.G., Van Meter K. Decompression illness in divers: a review of the literature // Neurologist. 2002. V. 8. № 3. P. 186.
  27. Malmgren R., Thorsen T., Nordvik A., Holmsen H. Microbubble-induced phospholipase C activation does not correlate with platelet aggregation // Thromb. Haemost. 1993. V. 69. № 4. P. 394.
  28. Eckmann D.M, Armstead S.C. Influence of endothelial glycocalyx degradation and surfactants on air embolism adhesion // Anesthesiology. 2006. V. 105. № 6. P. 1220.
  29. Barak O.F., Janjic N., Drvis I. et al. Vascular dysfunction following breath-hold diving // Can. J. Physiol. Pharmacol. 2020. V. 98. № 2. P. 124.
  30. Eichhorn L., Dolscheid-Pommerich R., Erdfelder F. et al. Sustained apnea induces endothelial activation // Clin. Cardiol. 2017. V. 40. № 9. P. 704.
  31. Leite A.R., Borges-Canha M., Cardoso R. et al. Novel biomarkers for evaluation of endothelial dysfunction // Angiology. 2020. V. 71. № 5. P. 397.
  32. El-Gamal H., Parray A.S., Mir F.A. et al. Circulating microparticles as biomarkers of stroke: A focus on the value of endothelial- and platelet-derived microparticles // J. Cell. Physiol. 2019. V. 234. № 10. P. 16739.
  33. Culic V.C., Van Craenenbroeck E., Muzinic N.R. et al. Effects of scuba diving on vascular repair mechanisms // Undersea Hyperb. Med. 2014. V. 41. № 2. P. 97.
  34. Olszański R., Sićko Z., Baj Z. et al. Effect of saturated air and nitrox diving on selected parameters of haemostasis // Bull. Inst. Marit. Trop. Med. Gdynia. 1997. V. 48. № 1–4. P. 75.
  35. Bao X.-C., Shen Q., Fang Y.-Q., Wu J.-Q. Human Physiological Responses to a Single Deep Helium-Oxygen Diving // Front. Physiol. 2021. V. 12. P. 735986.
  36. Durgin B.G., Straub A.C. Redox control of vascular smooth muscle cell function and plasticity // Lab. Invest. 2018. V. 98. № 10. P. 1254.
  37. Laurindo F.R.M. Redox cellular signaling pathways in endothelial dysfunction and vascular disease / Endothelium and Cardiovascular Diseases // Eds. Da Luz P.L., Libby P., Chagas A.C.P., Laurindo F.R.M. Academic Press; Cambridge, MA, USA, 2018. Ch. 10. P. 127.
  38. Madamanchi N.R., Vendrov A., Runge M.S. Oxidative stress and vascular disease // Arterioscler. Thromb. Vasc. Biol. 2005. V. 25. № 1. P. 29.
  39. Cadroy Y., Dupouy D., Boneu B., Plaisancié H. Polymorphonuclear leukocytes modulate tissue factor production by mononuclear cells: role of reactive oxygen species // J. Immunol. 2000. V. 164. № 7. P. 3822.
  40. Görlach A., Brandes R.P., Bassus S. et al. Oxidative stress and expression of p22phox are involved in the up-regulation of tissue factor in vascular smooth muscle cells in response to activated platelets // FASEB J. 2000. V. 14. № 11. P. 1518.
  41. Herkert O., Diebold I., Brandes R.P. et al. NADPH oxidase mediates tissue factor-dependent surface procoagulant activity by thrombin in human vascular smooth muscle cells // Circulation. 2002. V. 105. № 17. P. 2030.
  42. Swiatkowska M., Szemraj J., Al-Nedawi K.N., Pawłowska Z. Reactive oxygen species upregulate expression of PAI-1 in endothelial cells // Cell. Mol. Biol. Lett. 2002. V. 7. № 4. P. 1065.
  43. BerenjiArdestani S., Matchkov V.V., Eftedal I., Pedersen M.A. Single simulated heliox dive modifies endothelial function in the vascular wall of ApoE knockout male rats more than females // Front. Physiol. 2019. V. 10. P. 1342.
  44. Brubakk A.O., Duplancic D., Valic Z. et al. A single air dive reduces arterial endothelial function in man // J. Physiol. 2005. V. 566. Pt. 3. P. 901.
  45. Obad A., Marinovic J., Ljubkovic M. et al. Successive deep dives impair endothelial function and enhance oxidative stress in man // Clin. Physiol. Funct. Imaging. 2010. V. 30. № 6. P. 432.
  46. Roka-Moiia Y., Ammann K.R., Miller-Gutierrez S. et al. Shear-mediated platelet activation in the free flow II: Evolving mechanobiological mechanisms reveal an identifiable signature of activation and a bi-directional platelet dyscrasia with thrombotic and bleeding features // J. Biomech. 2021. V. 123. P. 110415.
  47. Casa L.D.C., Ku D.N. Thrombus formation at high shear rates // Annu. Rev. Biomed. Eng. 2017. V. 19. P. 415.
  48. Sandrini L., Ieraci A., Amadio P. et al. Impact of acute and chronic stress on thrombosis in healthy individuals and cardiovascular disease patients // Int. J. Mol. Sci. 2020. V. 21. № 21. P. 7818.
  49. Thorsen T., Lie R.T., Holmsen H. Induction of platelet aggregation in vitro by microbubbles of nitrogen // Undersea Biomed. Res. 1989. V. 16. № 6. P. 453.
  50. Pendergast D.R., Moon R.E., Krasney J.J. et al. Human physiology in an aquatic environment // Compr. Physiol. 2015. V. 5. № 4. P. 1705.
  51. Anegg U., Dietmaier G., Maier A. et al. Stress-induced hormonal and mood responses in scuba divers: a field study // Life Sci. 2002. V. 70. № 23. P. 2721.
  52. Zarezadeh R., Azarbayjani M.A. The effect of air scuba dives up to a depth of 30 metres on serum cortisol in male divers // Diving Hyperb. Med. 2014. V. 44. № 3. P. 158.
  53. Olszański R., Radziwon P., Piszcz J. et al. Activation of platelets and fibrinolysis induced by saturated air dives // Aviat. Space Environ. Med. 2010. V. 81. № 6. P. 585.
  54. Domoto H., Nakabayashi K., Hashimoto A. et al. Decrease in platelet count during saturation diving // Aviat. Space Environ. Med. 2001. V. 72. № 4. P. 380.
  55. Lambrechts K., Pontier J.M., Mazur A. et al. Effect of decompression-induced bubble formation on highly trained divers microvascular function // Physiol. Rep. 2013. V. 1. № 6. P. e00142.
  56. Olszański R., Radziwon P., Baj Z. et al. Changes in the extrinsic and intrinsic coagulation pathways in humans after decompression following saturation diving // Blood Coagul. Fibrinolysis. 2001. V. 12. № 4. P. 269.
  57. Radziwon P., Olszański R., Tomaszewski R. et al. Decreased levels of PAI-1 and alpha 2-antiplasmin contribute to enhanced fibrinolytic activity in divers // Thromb. Res. 2007. V. 121. № 2. P. 235.
  58. Baj Z., Olszański R., Majewska E., Konarski M. The effect of air and nitrox divings on platelet activation tested by flow cytometry // Aviat. Space Environ. Med. 2000. V. 71. № 9. P. 925.
  59. Olszański R., Radziwon P., Galar M. et al. Diving up to 60 m depth followed by decompression has no effect on pro-enzyme and total thrombin activatable fibrinolysis inhibitor antigen concentration // Blood Coagul. Fibrinolysis. 2003. V. 14. № 7. P. 659.
  60. Olszanski R., Radziwon P., Siermontowski P. et al. Trimix instead of air, decreases the effect of short-term hyperbaric exposures on platelet and fibrinolysis activation // Adv. Med. Sci. 2010. V. 55. № 2. P. 313.
  61. Bosco G., Yang Z.J., Di Tano G. et al. Effect of in-water oxygen prebreathing at different depths on decompression-induced bubble formation and platelet activation // J. Appl. Physiol. 2010. V. 108. № 5. P. 1077.
  62. Pontier J.M., Lambrechts K. Effect of oxygen-breathing during a decompression-stop on bubble-induced platelet activation after an open-sea air dive: oxygen-stop decompression // Eur. J. Appl. Physiol. 2014. V. 114. № 6. P. 1175.
  63. Madden D., Thom S.R., Milovanova T.N. et al. Exercise before scuba diving ameliorates decompression-induced neutrophil activation // Med. Sci. Sports Exerc. 2014. V. 46. № 10. P. 1928.
  64. Philp R.B., Bennett P.B., Andersen J.C. et al. Effects of aspirin and dipyridamole on platelet function, hematology, and blood chemistry of saturation divers // Undersea Biomed. Res. 1979. V. 6. № 2. P. 127.
  65. Philp R.B., Freeman D., Francey I., Bishop B. Hematology and blood chemistry in saturation diving: I. Antiplatelet drugs, aspirin, and VK744 // Undersea Biomed. Res. 1975. V. 2. № 4. P. 233.
  66. Bakken A.M., Farstad M., Holmsen H. Fatty acids in human platelets and plasma. Fish oils decrease sensitivity toward N2 microbubbles // J. Appl. Physiol. 1991. V. 70. № 6. P. 2669.

Declaração de direitos autorais © Д.С. Кузичкин, А.А. Маркин, О.А. Журавлева, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies