Grip Force Control in 21-Day Dry Immersion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

During space flight, the changes in the functions of the upper limbs can affect the quality of operator activity. At the same time, there are very few data on this topic, because most of the research is focused on the structure and functions of the lower extremities. The aim was to study the characteristics of the grip force control during the decrease of the support and proprioceptive sensory signals in the conditions of the ground-based model of the effects of space flight – dry immersion (DI). The duration of DI exposure was 21 days. 10 male volunteers performed tests using a hand dynamometer for maximal voluntary contraction, the maintenance of the reference force, the reproduction of this force from memory, and the grip force gradation test. The subjects performed this series of tests before exposure to DI, then on days 1, 3, 5, 10, 15, and 20 of DI, and days 1 and 3 of the recovery period. The results show that DI exposure led to an increase in proprioceptive sensitivity in the tasks without visual feedback when with open eyes from day 5 of DI the subjects were more mistaken in the reproduction of the reference force using the dominant hand. The sensory processing/modulation disorder under DI factors may cause this phenomenon.

About the authors

I. S. Zelenskaya

Institute of Biomedical Problems of the RAS

Author for correspondence.
Email: radostniyden@mail.ru
Russia, Moscow

A. A. Saveko

Institute of Biomedical Problems of the RAS

Email: radostniyden@mail.ru
Russia, Moscow

L. E. Amirova

Institute of Biomedical Problems of the RAS

Email: radostniyden@mail.ru
Russia, Moscow

V. V. Kitov

Institute of Biomedical Problems of the RAS

Email: radostniyden@mail.ru
Russia, Moscow

I. N. Nosikova

Institute of Biomedical Problems of the RAS

Email: radostniyden@mail.ru
Russia, Moscow

K. A. Zelensky

Institute of Biomedical Problems of the RAS

Email: radostniyden@mail.ru
Russia, Moscow

E. S. Tomilovskaya

Institute of Biomedical Problems of the RAS

Email: radostniyden@mail.ru
Russia, Moscow

References

  1. Johansson R.S., Westling G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects // Exp. Brain Res. 1984. V. 56. № 3. P. 550.
  2. Flanagan J.R., Tresilian J.R. Grip-Load Force Coupling: A General Control Strategy for Transporting Objects // J. Exp. Psychol. Hum. Percept. Perform. 1994. V. 20. № 5. P. 944.
  3. Grover F., Lamb M., Bonnette S. et al. Intermittent coupling between grip force and load force during oscillations of a hand-held object // Exp. Brain Res. 2018. V. 236. № 10. P. 2531.
  4. Закирова А.З., Шигуева Т.А., Томиловская Е.С., Козловская И.Б. Влияние механостимуляции опорных зон стоп на характеристики Н-рефлекса в условиях безопорности // Физиология человека. 2015. Т. 45. № 2. С. 46. Zakirova A.Z., Shigueva T.A., Tomilovskaya E.S., Kozlovskaya I.B. Effects of mechanical stimulation of the sole support zones on the H-reflex characteristics under conditions of support unloading // Human Physiology. 2015. V. 41. № 2. P. 150.
  5. Kozlovskaya I.B. Gravity and the Tonic Postural Motor System // Human Physiology. 2018. V. 44. № 7. P. 725.
  6. Носикова И.Н., Рябова А.М., Дмитриева Л.Е. и др. Особенности вызванных магнитной стимуляцией моторных потенциалов мышц голени в условиях 5-суточной “сухой” иммерсии у здоровых добровольцев // Физиология человека. 2021. Т. 47. № 3. С. 44. Nosikova I.N., Ryabova A.M., Dmitrieva L.E. et al. Specific features of the motor potentials of the leg muscles induced by magnetic stimulation under the conditions of a five-day “dry” immersion in healthy volunteers // Human Physiology. 2021. V. 47. № 3. P. 282.
  7. Attias J., Grassi A., Bosutti A. et al. Head-down tilt bed rest with or without artificial gravity is not associated with motor unit remodeling // Eur. J. Appl. Physiol. 2020. V. 120. № 11. P. 2407.
  8. Kozlovskaya I.B., Kirenskaya A.V. Mechanisms of disorders of the characteristics of fine movements in long-term hypokinesia // Neurosci. Behav. Physiol. 2004. V. 34. № 7. P. 747.
  9. Shenkman B.S., Tsaturyan A.K., Vikhlyantsev I.M. et al. Molecular Mechanisms of Muscle Tone Impairment under Conditions of Real and Simulated Space Flight // Acta Naturae. 2021. V. 13. № 2. P. 85.
  10. Schoenrock B., Zander V., Dern S. et al. Bed rest, exercise countermeasure and reconditioning effects on the human resting muscle tone system // Front. Physiol. 2018. V. 9. P. 810.
  11. Demangel R., Treffel L., Py G. et al. Early structural and functional signature of 3-day human skeletal muscle disuse using the dry immersion model // Physiol. J. 2017. V. 595. № 13. P. 4301.
  12. Juhl O.J., Buettmann E.G., Friedman M.A. et al. Update on the effects of microgravity on the musculoskeletal system // NPJ Microgravity. 2021. V. 7. № 1. P. 28.
  13. Vil’chinskaya N.A., Mirzoev T.M., Lomonosova Y.N. et al. Effect of Short-term Dry Immersion on Proteolytic Signaling in the Human Soleus Muscle // Human Physiology. 2017. V. 43. № 7. P. 787.
  14. Shigueva T.A., Kitov V.V., Amirova L.E. et al. Effects of microgravity on characteristics of the accuracy control of movements / 39th ISGP Meeting & ESA Life Sciences Meeting. 18-22 Jun 2018 ESA / ESTEC, Keplerlaan 1, Noordwijk, Netherlands // Front. Physiol. https://doi.org/10.3389/conf.fphys.2018.26.00051
  15. Iwase S., Nishimura N., Tanaka K., Mano T. Effects of microgravity on human physiology / Beyond LEO-Human Health Issues for Deep Space Exploration // Ed. Robert J. Reynolds. [Электронный ресурс]. IntechOpen, 2020. ISBN 978-1-78985-510-4. 110 p. https://doi.org/10.5772/intechopen.90700
  16. Sayenko D.G., Miller T.F., Melnik K.A. et al. Acute effects of dry immersion on kinematic characteristics of postural corrective responses // Acta Astronaut. 2016. V. 121. P. 110.
  17. Bareille M.P., Maillet A. Human: Bed Rest/Head-Down-Tilt/Hypokinesia / Generation and Applications of Extra-Terrestrial Environments on Earth. River Publishers, 2022. P. 133.
  18. Mulavara A.P., Peters B.T., Miller C.A. et al. Physiological and Functional Alterations after Spaceflight and Bed Rest // Med. Sci. Sports Exerc. 2018. V. 50. № 9. P. 1961.
  19. Шишкин Н.В., Ермаков И.Ю., Амирова Л.Е. и др. Вертикальная устойчивость с открытыми и закрытыми глазами до и после воздействия 21-суточной “сухой” иммерсии // Авиакосм. и эколог. мед. 2020. Т. 54. № 4. С. 52. Shishkin N.V., Ermakov I.Yu., Amirova L.E. et al. [Vertical stability with open and closed eyes before and after 21-day dry immersion] // Aviakosm. Ekolog. Med. 2020. V. 54. № 4. P. 52.
  20. Nguyen N., Kim G., Kim K.S. Effects of microgravity on human physiology // Korean J. Aerosp. Environ Med. 2020. V. 30. № 1. P. 25.
  21. Hagio S., Ishihara A., Terada M. et al. Muscle synergies of multidirectional postural control in astronauts on Earth after a long-term stay in space // J. Neurophysiol. 2022. V. 127. № 5. P. 1230.
  22. Ohira T., Kawano F., Goto K. et al. Responses of neuromuscular properties to unloading and potential countermeasures during space exploration missions // Neurosci. Biobehav. Rev. 2022. V. 136. P. 104617.
  23. Erdeniz B., Tükel Ş. The effects of weightlessness on human body: spatial orientation, sensory-integration and sensory-compensation / Comparative Kinesiology of the Human Body. Academic Press, 2020. P. 477.
  24. Bloomberg J.J., Reschke M.F., Clement G. et al. Evidence Report: Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular / National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas, 2015. 152 p. [Электронный ресурс]. Report/ Patent Number JSC-CN-34446. NTRS 20150018603.
  25. Gantchev G., Gatev P., Stambolieva K. et al. Weightlessness influences the handgrip force matching // Bylgarska Akademiya na Naukite, Dokladi. 1994. V. 47. № 10. P. 115.
  26. Gaveau J., Paizis C., Berret B. et al. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning // J. Neurophysiol. 2011. V. 106. № 2. P. 620.
  27. Moore S.T., Dilda V., Morris T.R. et al. Long-duration spaceflight adversely affects post-landing operator proficiency // Sci. Rep. 2019. V. 9. № 1. P. 2677.
  28. Tays G.D., Hupfeld K.E., McGregor H.R. et al. The Effects of Long Duration Spaceflight on Sensorimotor Control and Cognition // Front. Neural. Circuits. 2021. V. 15. P. 723504.
  29. Гуровский Н.Н., Черепахин М.А. К вопросу о сенсорно-моторной координации человека в условиях невесомости // Косм. биол. и мед. 1967. Т. 1. № 3. С. 52. Gurovsky N.N., Cherpakhin M.A. [On the sensomotor coordination of man during weightlessness] // Kosm. Biol. Med. 1967. V. 1. № 3. P. 52.
  30. Bock O., Cheung B.S.K. Control of isometric force in hypergravity // Aviat. Space Environ. Med. 1998. V. 69. № 1. P. 27.
  31. Mierau A., Girgenrath M., Bock O. Isometric force production during changed-Gz episodes of parabolic flight // Eur. J. Appl. Physiol. 2008. V. 102. № 3. P. 313.
  32. Dalecki M., Dräger T., Mierau A., Bock O. Production of finely graded forces in humans: Effects of simulated weightlessness by water immersion // Exp. Brain Res. 2012. V. 218. № 1. P. 41.
  33. Koppelmans V., Mulavara A.P., Yuan P. et al. Exercise as potential countermeasure for the effects of 70 days of bed rest on cognitive and sensorimotor performance // Front. Syst. Neurosci. 2015. V. 9. P. 121.
  34. Opsomer L., Théate V., Lefèvre Ph., Thonnard J.-L. Dexterous manipulation during rhythmic arm movements in Mars, moon, and micro-gravity // Front. Physiol. 2018. V. 9. P. 938.
  35. Bruno V., Sarasso P., Fossataro C. et al. The rubber hand illusion in microgravity and water immersion // NPJ Microgravity. 2022. V. 8. № 1. P. 15.
  36. Tays G.D., McGregor H.R., Lee J.K. et al. The Effects of 30 Minutes of Artificial Gravity on Cognitive and Sensorimotor Performance in a Spaceflight Analog Environment // Front. Neural. Circuits. 2022. V. 16. P. 784280.
  37. Ekstrand E., Rylander L., Lexell J., Brogårdh C. Perceived ability to perform daily hand activities after stroke and associated factors: a cross-sectional study // BMC Neurol. 2016. V. 16. № 1. P. 208.
  38. Шульженко Е.Б., Виль-Вильямс И.Ф. Возможность проведения длительной водной иммерсии методом “сухого” погружения // Косм. биол. и авиакосм. мед. 1976. Т. 10. С. 82. Shulzhenko E.B., Vill-Villiams I.F. [The opportunity to conduct long-term water immersion method Dry Immersion] // Kosm. Biol. Aviakosm. Med. 1976. V. 10. P. 82.
  39. Шульженко Е.Б. Физиологические эффекты измененной гравитации (модельные эксперименты в наземных условиях). Автореф. дис. ... докт. мед. наук. М.: Ин-т мед.-биол. проблем, 1975. 27 с.
  40. Tomilovskaya E.S., Rukavishnikov I.V., Amirova L.E. et al. 21-Day dry immersion: schedule of investigations and major results // Human Physiology. 2021. V. 47. № 7. P. 735.
  41. Reschke M.F., Kozlovskaya I.B., Lysova N. et al. [Joint Russian-USA field test: implications for deconditioned crew following long duration spaceflight] // Aviakosm. Ekolog. Med. 2020. V. 54. № 6. P. 94.
  42. Jones L.A., Hunter I.W. Effect of fatigue on force sensation // Exp. Neurol. 1983. V. 81. № 3. P. 640.
  43. Tang L., Zhang H., Zhang B. A note on error bars as a graphical representation of the variability of data in biomedical research: choosing between standard deviation and standard error of the mean // J. Pancreatol. 2019. V. 2. № 3. P. 69.
  44. Reynolds R.J., Shelhamer M. Introductory Chapter: Research Methods for the Next 60 Years of Space Exploration / Beyond LEO-Human Health Issues for Deep Space Exploration. [Электронный ресурс]. IntechOpen, 2020. https://doi.org/10.5772/intechopen.92331
  45. Miller L.J., Nielsen D.M., Schoen S.A., Brett-Green B.A. Perspectives on sensory processing disorder: a call for translational research // Front. Hum. Neurosci. 2009. V. 3. P. 22.
  46. Miller L.J., Schoen S.A., Mulligan S., Sullivan J. Identification of sensory processing and integration symptom clusters: A preliminary study // Occup. Ther. Int. 2017. P. 2876080.
  47. Bar-Shalita T., Granovsky Y., Parush S., Weissman-Fogel I. Sensory modulation disorder (SMD) and pain: a new perspective // Front. Hum. Neurosci. 2019. V. 13. P. 27.
  48. Глухих Д.О., Наумов И.А., Корнилова Л.Н. Следящая функция глаз, зрительно-мануальное слежение и вестибулярная функция в условиях 21-суточной “сухой” иммерсии // Авиакосм. и эколог. мед. 2020. Т. 54. № 4. С. 44. Glukhikh D.O., Naumov I.A., Kornilova L.N. et al. [Eye tracking function, visual-manual tracking and vestibular function under the conditions of 21-day dry immer-sion] // Aviakosm. Ekolog. Med. 2020. V. 54. № 4. P. 44.
  49. Наумов И.А., Корнилова Л.Н., Глухих Д.О. и др. Влияние афферентации различных сенсорных входов на отолито-окулярный рефлекс в условиях реальной и моделируемой невесомости // Физиология человека. 2021. Т. 47. № 1. С. 84. Naumov I.A., Kornilova L.N., Glukhikh D.O. et al. The Effect of Afferentation of Various Sensory Systems on the Otolith-Ocular Reflex in a Real and Simulated Weightlessness // Human Physiology. 2021. V. 47. № 1. P. 70.
  50. Соснина И.С., Ляховецкий В.А., Зеленский К.А. и др. Влияние 21-суточной “сухой” иммерсии на иллюзии Понзо и Мюллер-Лайера // Физиология человека. 2021. Т. 47. № 1. С. 63. Sosnina I.S., Lyakhovetskii V.A., Zelenskiy K.A. et al. The effect of a 21-day dry immersion on Ponzo and Müller–Lyer illusions // Human Physiology. 2021. V. 47. № 1. P. 51.
  51. Шошина И.И., Соснина И.С., Зеленский К.А. и др. Контрастная чувствительность зрительной системы в условиях “сухой” иммерсии // Биофизика. 2020. Т. 65. № 4. С. 798. Shoshina I.I., Sosnina I.S., Zelenskiy K.A. et al. The contrast sensitivity of the visual system in “dry” immersion conditions // Biophysics. 2020. V. 65. № 4. P. 681.
  52. Пасекова О.Б., Сигалева Е.Э., Марченко Л.Ю., Мацнев Э.И. Перспектива использования метода регистрации различных классов отоакустической эмиссии для динамической оценки состояния внутричерепного давления в условиях моделируемой микрогравитации и космического полeта / 55-е Научные чтения памяти К.Э. Циолковского. Калуга, 15–17 сентября 2020 г. // Научное значение трудов К.Э. Циолковского: история и современность. Калуга: ИП Стрельцов И.А. (Изд-во “Эйдос”), 2020. Ч. 1. С. 314.
  53. Томиловская Е.С., Киренская А.В., Лазарев И.Е. и др. Влияние безопорности на характеристики пресаккадических ЭЭГ-потенциалов у испытуемых с разным профилем асимметрии // Авиакосм. и эколог. мед. 2008. Т. 42. № 5. С. 14. Tomilovskaya E.S., Kirenskaya A.V., Lazarev I.E. [Influence of lack of safety on the characteristics of presagade EEG potentials in subjects with different asymmetry profiles] // Aviakosm. Ekolog. Med. 2008. V. 42. № 5. P. 14.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (524KB)
4.

Download (84KB)
5.

Download (227KB)
6.

Download (365KB)
7.

Download (157KB)
8.

Download (165KB)

Copyright (c) 2023 И.С. Зеленская, А.А. Савеко, Л.Е. Амирова, В.В. Китов, И.Н. Носикова, К.А. Зеленский, Е.С. Томиловская

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies