Rest Energy Expenditure and Energy Expenditure During Submaximal Exercise: New Approach to Assessment of Performance in Skiers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of the present study was to analyse rest energy expenditure (REE) and energy expenditure (EE) during submaximal exercise according to performance of athletes. A retrospective analysis of data from 2014 to 2020 among cross-country skiers in the preparatory phase was performed. Depending on the potential performance athletes (n = 136) were divided into two groups: I – test completed to the anaerobic threshold (AnT), II – test completed until exhaustion. The present study included the data only before AnT for a correct comparison of the results. REE was 2058.5 ± 220.5 kcal/day in I group and 2023.1 ± 216.4 kcal/day in II group (p = 0.481). In REE structure, the contribution of fats and carbohydrates (CHOs) was 69 and 31% in I group, 48 (p = 0.021) and 52% (p < 0.000) in II group. Correlations between VO2rest and REE, as well as the rate of fats and CHOs oxidation at rest were revealed. In I and II groups the VO2AnT (p < 0.000) and relative values of VO2max (p < 0.05) were significantly different. EE before AnT was 135.9 ± 31.2 and 134.0 ± 23.4 kcal (p = 0.399) for I and II groups. The present study showed that the balance 1 : 1 of fats and CHOs in the REE structure is a more informative performance marker than quantitative assessment of EE. VO2AnT reduced by 20% relative to VO2max may indicate the functional economization and the body’s ability to perform exercise during long time, including in the anaerobic exercise. Endurance athletes demonstrated economy of CHOs against actively using of fats during submaximal exercise. Complex estimated of performance indicators and EE (including contribution fats and CHOs) should be taken into account when studying the performance of athletes.

About the authors

E. A. Bushmanova

Department of Ecological and Medical Physiology, Institute of Physiology, Ural Branch, RAS

Author for correspondence.
Email: katerinabushmanova@mail.ru
Russia, Syktyvkar

A. Yu. Lyudinina

Department of Ecological and Medical Physiology, Institute of Physiology, Ural Branch, RAS

Author for correspondence.
Email: salu_06@inbox.ru
Russia, Syktyvkar

References

  1. Levine J.A. Measurement of energy expenditure // Public Health Nutr. 2005. V. 8. № 7A. P. 1123.
  2. Westerterp K.R. Physical activity and physical activity induced energy expenditure in humans: measurement, determinants, and effects // Front. Physiol. 2013. V. 4. P. 90.
  3. Redondo R.B. Resting energy expenditure; assessment methods and applications // Nutr. Hosp. 2015. V. 31. Supl. 3. P. 245.
  4. MacLean P.S., Bergouignan A., Cornier M.-A., Jackman M.R. Biology’s response to dieting: the impetus for weight regain // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011. V. 301. № 3. P. R581.
  5. Esteves de Oliveira F.C., de Mello Cruz A.C., Gonçalves O.C. et al. Gasto energético de adultos brasileños saludables: una comparación de métodos // Nutr. Hosp. 2008. V. 23. № 6. P. 554.
  6. MacKenzie-Shalders K., Kelly J.T., Daniel S. et al. The effect of exercise interventions on resting metabolic rate: A systematic review and meta-analysis // J. Sports Sci. 2020. V. 38. № 14. P. 1635.
  7. Jagim A.R., Camic C.L., Kisiolek J. et al. Accuracy of Resting Metabolic Rate Prediction Equations in Athletes // J. Strength Cond. Res. 2018. V. 32. № 7. P. 1875.
  8. Purcell S.A., Johnson-Stoklossa C., Braga Tibaes J.R. et al. Accuracy and reliability of a portable indirect calorimeter compared to whole-body indirect calorimetry for measuring resting energy expenditure // Clin. Nutr. ESPEN. 2020. V. 39. P. 67.
  9. Rømer T., Thunestvedt Hansen M., Frandsen. J. et al. The relationship between peak fat oxidation and prolonged double-poling endurance exercise performance // Scand. J. Med. Sci. Sports. 2020. V. 30. № 11. P. 2044.
  10. Lyudinina A.Y., Bushmanova E.A., Varlamova N.G., Bojko E.R. Dietary and plasma blood α-linolenic acid as modulators of fat oxidation and predictors of aerobic performance // J. Int. Soc. Sports Nutr. 2020. V. 17. № 1. P. 57.
  11. Marra M., Di Vincenzo O., Cioffi I. et al. Resting energy expenditure in elite athletes: development of new predictive equations based on anthropometric variables and bioelectrical impedance analysis derived phase angle // J. Int. Soc. Sports Nutr. 2021. V. 18. № 1. P. 68.
  12. Watson A.D., Zabriskie H.A., Witherbee K.E. et al. Determining a resting metabolic rate prediction equation for collegiate female athletes // J. Strength Cond. Res. 2019. V. 33. № 9. P. 2426.
  13. Матвеев Л.П. Проблема периодизации спортивной тренировки / Гос. центр. ордена Ленина ин-т физ. культуры. Кафедра теории и методики физ. воспитания. 2-е изд. М.: Физкультура и спорт, 1965. 244 с.
  14. Бушманова Е.А., Логинова Т.П., Людинина А.Ю. Пищевой термогенез низкокалорийной углеводной нагрузки минимально влияет на энерготраты покоя // Журн. мед.-биол. исследований. 2023. Т. 11. № 2. С. 153. Bushmanova E.A., Lodinova T.P., Lyudinina A.Yu. The thermic effect of carbohydrate minimally influence on rest energy expenditure // J. Med. Biol. Res. 2023. V. 11. № 2. P. 153.
  15. Физиолого-биохимические механизмы обеспечения спортивной деятельности зимних циклических видов спорта / Отв. ред. Бойко Е.Р. Сыктывкар: ООО “Коми республиканская типография”, 2019. 256 с.
  16. McGilvery R., Goldstein G. Biochemistry. A functional approach. Saunders: Philadelphia, PA, 1983. 976 p.
  17. Burke L.M., Hawley J.A. Effects of short-term fat adaptation on metabolism and performance of prolonged exercise // Med. Sci. Sports Exerc. 2002. V. 34. № 9. P. 1492.
  18. Maunder E., Plews D.J., Kilding A.E. Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values // Front. Physiol. 2018. V. 9. P. 599.
  19. Melzer K. Carbohydrate and fat utilization during rest and physical activity // E. Spen. Eur. E. J. Clin. Nutr. Metab. 2011. V. 6. P. e45.
  20. Людинина А.Ю., Бушманова Е.А., Есева Т.В., Бойко Е.Р. Соответствие энергопотребления энерготратам у лыжников-гонщиков в общеподготовительный период // Вопросы питания. 2022. Т. 91. № 1. С. 109. Lyudinina A.Yu., Bushmanova E.A., Eseva T.V., Bojko E.R. [Accordance of energy intake to energy expenditure in skiers across the preparation phase] // Vopr. Pitan. [Problems of Nutrition]. 2022. V. 91. № 1. P. 109.
  21. Glancy B., Hartnell L.M., Malide D. et al. Mitochondrial reticulum for cellular energy distribution in muscle // Nature. 2015. V. 523. № 7562. P. 617.
  22. Jacobs R.A., Lundby C. Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes // J. Appl. Physiol. 2013. V. 114. № 3. P. 344.
  23. Da Boit M., Hunter A.M., Gray S.R. Fit with good fat? The role of n-3 polyunsaturated fatty acids on exercise performance // Metabolism. 2016. V. 66. P. 214.
  24. Andersson Hall U., Edin F., Pedersen A., Madsen K. Whole-body fat oxidation increases more by prior exercise than overnight fasting in elite endurance athletes // Appl. Physiol. Nutr. Metab. 2016. V. 41. № 4. P. 430.
  25. Achten J., Jeukendrup A.E. Maximal fat oxidation during exercise in trained men // Int. J. Sports Med. 2003. V. 24. № 8. P. 603.
  26. San-Millán I., Brooks G.A. Assessment of Metabolic Flexibility by Means of Measuring Blood Lactate, Fat, and Carbohydrate Oxidation Responses to Exercise in Professional Endurance Athletes and Less-Fit Individuals // Sports Med. 2018. V. 48. № 2. P. 467.
  27. Dong S., Qian L., Cheng Z. et al. Lactate and Myocardiac Energy Metabolism // Front. Physiol. 2021. V. 12. P. 715081.
  28. Варламова Н.Г., Логинова Т.П., Гарнов И.О. и др. Частота сердечных сокращений, потребление кислорода и артериальное давление у лыжников разной квалификации в тесте “до отказа” // Человек. Спорт. Медицина. 2021. Т. 21. № 1. С. 53. Varlamova N.G., Loginova T.P., Garnov I.O. et al. Heart rate, oxygen consumption and arterial pressure in skiers of different skill levels in the test to exhaustion // Human. Sport. Medicine. 2021. V. 21. № 1. P. 53.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (525KB)
3.

Download (56KB)
4.

Download (36KB)

Copyright (c) 2023 Е.А. Бушманова, А.Ю. Людинина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies