On the Variability of a Simple Sensorimotor Reaction

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

To date, a wide variety of distributions of the simple sensorimotor reaction (SSR) has been studied. In this work, we also studied the distributions of this phenomenon, taking into account the fact that SSR has a constant and a variable part. The distribution of the constant component of the SSR had a normal character, while the distribution of the variable components had a more complex form. Analysis of the distribution of SSR in one subject for 36 minutes showed that both the constant and variable parts of SSR had a multi-peak distribution and a long “tail” in the range of large values. The study of the behavior of the SSR parameters over a relatively long period of time, along with an increase in the constant part of the SSR, revealed periodic and abrupt changes in both the constant component and the variable components. It is assumed that such differences are associated with a change in the structure of the transmission of excitation from sensors to the motor cortex over time.

作者简介

A. Kulakov

Kazan National Research Technical University named after A.N. Tupolev – KAI

编辑信件的主要联系方式.
Email: alekulakov@yandex.ru
Russia, Kazan

参考

  1. Luce R.D. Response Times: Their Role in Inferring Elementary Mental Organization. Oxford University Press. USA, 1986. 577 p.
  2. Шутова С.В., Муравьева И.В. Сенсомоторные реакции как характеристика функционального состояния ЦНС // Вестник ТГУ. 2013. Т. 18. № 5. С. 2831.
  3. Woods D.L., Wyma J.M., Yund E.W., Herron T.J. Factors influencing the latency of simple reaction time // Front. Hum. Neurosci. 2015. V. 9. P. 131.
  4. Hsu Y.-F. On measuring the minimum detection time: A simple reaction time study in the time estimation paradigm // Br. J. Math. Stat. Psychol. 2005. V. 58. Pt. 2. P. 259.
  5. Зайцев А.В., Скорик Ю.А. Математическое описание сенсомоторной реакции. Распределение Времени // Физиология человека. 2002. Т. 28. № 4. С. 123. Zaitsev A.V., Skorik Yu.A. Mathematical Description of Sensorimotor Reaction Time Distribution // Human Physiology. 2002. V. 28. № 4. P. 494.
  6. Leunissen I., Zandbelt B.B., Potocanac Z. et al. Reliable estimation of inhibitory efficiency: to anticipate, choose or simply react? // Eur. J. Neurosci. V. 45. № 12. P. 1512.
  7. Voskuilen R.C., Teodorescu A. Modeling 2-alternative forced-choice tasks: Accounting for both magnitude and difference effects // Cogn. Psychol. 2018. V. 103. P. 1.
  8. Carpenter Scott R.H.S., McDonald A. LATER predicts saccade latency distributions in reading // Exp. Brain Res. 2007. V. 177. № 2. P. 176.
  9. Madelain L., Champrenaut L., Chauvin A. Control of Sensorimotor Variability by Consequences // J. Neurophysiol. 2007. V. 98. № 4. P. 2255.
  10. Story G.W., Carpenter R.H.S. Dual LATER-unit model predicts saccadic reaction time distributions in gap, step and appearance tasks // Exp. Brain Res. 2009. V. 193. № 2. P. 287.
  11. Noorani I., Gao M.J., Pearson B.C., Carpenter R.H.S. Predicting the timing of wrong decisions with LATER // Exp. Brain Res. 2011. V. 209. № 4. P. 587.
  12. Gray R., Spence C., Ho C., Tan H.Z. Efficient Multimodal Cuing of Spatial Attention // Proceedings of the IEEE. 2013. V. 101. № 9. P. 2113.
  13. Reinagel P. Speed and Accuracy of Visual Motion Discrimination by Rats // PLoS One. 2013. V. 8. № 6. P. e68505.
  14. Соболев В.И. Характеристика простых психомоторных реакций при чередующейся разномодальной сенсорной стимуляции (электромиографическое исследование) / Ученые записки Крымского федерального университета имени В.И. Вернадского, Биология. Химия. Т. 5(71). 2019. № 1. С. 126.
  15. Baayen R.H., Milin P. Analyzing Reaction Times // Int. J. Psychol. Res. 2010. V. 3. № 2. P. 12.
  16. Harris C.M., Waddington J. On the convergence of time interval moments: caveat sciscitator // J. Neurosci. Methods. 2012. V. 205. № 2. P. 345.
  17. Hélie S. An Introduction to Model Selection: Tools and Algorithms // Tutorials in Quantitative Methods for Psychology. 2006. V. 2. № 1. P. 1.
  18. Whelan R. Effective analysis of reaction time data // Psychol. Rec. 2008. V. 58. P. 475.
  19. Medina J.M. Multiplicative processes and power laws in human reaction times derived from hyperbolic functions // Physics Letters A. 2012. V. 376. № 19. P. 1617.
  20. Noorani I. LATER models of neural decision behavior in choice tasks // Front. Integr. Neurosci. 2014. V. 8. P. 67.
  21. Noorani I., Carpenter R.H.S. Full reaction time distributions reveal the complexity of neural decision-making // Eur. J. Neurosci. 2011. V. 33. № 11. P. 1948.
  22. Levakova M., Ditlevsen S., Lansky P. Estimating latency from inhibitory input // Biol. Cybern. 2014. V. 108. № 4. P. 475.
  23. Bååth R. Estimating the distribution of sensorimotor synchronization data: A Bayesian hierarchical modeling approach // Behav. Res. Methods. 2016. V. 48. № 2. P. 463.
  24. Matzke D., Love J., Heathcote A. A Bayesian approach for estimating the probability of trigger failures in the stop-signal paradigm // Behav. Res. Methods. 2017. V. 49. № 1. P. 267.
  25. Donkin C., Brown S. Response Times and Decision-Making / Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience. John Wiley & Sons, 2018. 624 p.
  26. Tejo M., Araya H., Niklitschek-Soto S., Marmolejo-Ramos F. Theoretical models of reaction times arising from simple-choice tasks // Cogn. Neurodyn. 2019. V. 13. № 4. P. 409.
  27. Schweickert R., Giorgini M. Response time distributions: Some simple effects of factors selectively influencing mental processes // Psychon. Bull. Rev. 1999. V. 6. № 2. P. 269.
  28. Niemi P., Naatanen R. Foreperiod and si`mple reaction time // Psychol. Bull. 1981. V. 89. № 1. P. 133.
  29. Кулаков А.А. Особенности простой психофизиологической реакции // Физиология человека. 2018. Т. 44. № 4. С. 60. Kulakov A.A. Features of a Simple Psychophysiological Reaction // Human Physiology. 2018. V. 44. № 4. P. 412.
  30. Кукинов А.М. Применение порядковых статистик и ранговых критериев для обработки наблюдений. Поиск зависимости и оценка погрешности. М.: Наука, 1985. С. 97.
  31. Кулаков А.А. Анализ зашумленного экспоненциального спада как моделирование торможения простой психомоторной реакции / Матер. III Межд. научн.-практ. конф. “Современные проблемы развития фундаментальных и прикладных наук”. 25 апреля 2016. Praha. Czech Republi. Изд. дом. “Science of European”, 2016. Т. 3. С. 67.
  32. Лемешко Б.Ю. Непараметрические критерии. Руководство по применению. Изд-во НГУ, 2014. 162 с.
  33. Ильин Е.П. Дифференциальная психофизиология, изд. 2. СПб.: Питер, 2001. 464 с.
  34. Аладжалова Н.А. Психофизиологические аспекты сверхмедленной ритмической активности головного мозга. М.: “Наука”, 1979. 214 с.
  35. Кребс А.А., Филиппов И.В., Пугачев К. и др. Влияние нейромодуляторных центров на сверхмедленную биоэлектрическую активность первичных корковых отделов сенсорных систем головного мозга // Сенсорные системы. 2015. Т. 29. № 2. С. 163.
  36. Пугачев К.С., Филиппов И.В., Кребс А.А. и др. Мультисенсорные процессы переработки информации в корковых представительствах зрительной, слуховой и вкусовой сенсорных систем человека при участии сверхмедленных колебаний потенциалов // Сенсорные системы. 2016. Т. 30. № 1. С. 79.
  37. Reimann M.W., Nolte M., Scolamiero M. et al. Cliques of neurons bound into cavities provide a missing link between structure and function // Front. Comput. Neurosci. 2017. V. 11. P. 48.
  38. Spence C., Deroy O. How automatic are crossmodal correspondences? // Conscious. Cogn. 2013. V. 22. № 1. P. 245.
  39. Briscoe R.E. Multisensory processing and perceptual consciousness: Part II // Philosophy Compass. 2017. V. 12. P. e12423.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (95KB)
3.

下载 (161KB)
4.

下载 (196KB)
5.

下载 (391KB)
6.

下载 (757KB)

版权所有 © А.А. Кулаков, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».