Val66Met Polymorphism of Brain-Derived Neurotrophic Factor (BDNF) is Associated with Individual Alpha Peak Frequency and Alpha Power in Adults

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Single-nucleotide polymorphism within the BDNF gene (Val66Met) influences activity-dependent secretion of the brain-derived neurotrophic factor (BDNF), which affects neuroprotection and synaptic plasticity. Several studies found associations between Met allele and lower power of the EEG α-rhythm determined in the standard frequency range in young adults. Along with the power, one of the highly heritable EEG correlates of brain functions is the individual α-peak frequency (IAPF). Although IAPF has independent functional significance, its association with the Val66Met BDNF polymorphism has not been studied. IAPF is also used to determine the boundaries of individual frequency ranges; in contrast to the standard ones, they reflect functional characteristics of rhythms to a greater extent. We explored in 192 subjects aged 18–78 years whether parieto-occipital IAPF is associated with BDNF polymorphism and tested genotypic differences in α-power calculated in standard (8−12 Hz) and individual (from (IAPF –2) to (IAPF +2) Hz) frequency ranges. IAPF was decreased in Val/Met in comparison to Val/Val. For individual frequency range, genetic differences were found in both eyes closed (Val/Met > homozygous genotypes) and eyes open (Val-carriers > > Met/Met) condition. For standard frequency range – only in eyes open condition, which may be due to a shift of the α-functional range towards a region of low frequencies among Val/Met-carriers that showed a decrease in IAPF. The results indicate that the inclusion of Val/Met in the combined group of Met-carriers in the analysis of genetic differences in brain activity can eliminate the differences between Val/Val and Val/Met genotypes, as well as the advantage of using individual frequency bands in the analysis of BDNF-associated features of EEG.

Авторлар туралы

E. Privodnova

Scientific Research Institute of Neurosciences and Medicine; Novosibirsk State University

Хат алмасуға жауапты Автор.
Email: privodnovaeu@neuronm.ru
Russia, Novosibirsk; Russia, Novosibirsk

N. Volf

Scientific Research Institute of Neurosciences and Medicine; Novosibirsk State University

Хат алмасуға жауапты Автор.
Email: volfnv@neuronm.ru
Russia, Novosibirsk; Russia, Novosibirsk

Әдебиет тізімі

  1. Miranda M., Morici J.F., Zanoni M.B., Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain // Front. Cell. Neurosci. 2019. V. 13. P. 363.
  2. Tsai S.J. Critical Issues in BDNF Val66Met Genetic Studies of Neuropsychiatric Disorders // Front. Mol. Neurosci. 2018. V. 11. P. 156.
  3. Toh Y.L., Ng T., Tan M. et al. Impact of brain-derived neurotrophic factor genetic polymorphism on cognition: A systematic review // Brain Behav. 2018. V. 8. № 7. P. e01009.
  4. Kishi T., Yoshimura R., Ikuta T., Iwata N. Brain-Derived Neurotrophic Factor and Major Depressive Disorder: Evidence from Meta-Analyses // Front. Psychiatry. 2018. V. 8. P. 308.
  5. Youssef M.M., Underwood M.D., Huang Y.Y. et al. Association of BDNF Val66Met Polymorphism and Brain BDNF Levels with Major Depression and Suicide // Int. J. Neuropsychopharmacol. 2018. V. 21. № 6. P. 528.
  6. Zarza-Rebollo J.A., Molina E., López-Isac E. et al. Interaction Effect between Physical Activity and the BDNF Val66Met Polymorphism on Depression in Women from the PISMA-ep Study // Int. J. Environ. Res. Public Health. 2022. V. 19. № 4. P. 2068.
  7. Malone S.M., Burwell S.J., Vaidyanathan U. et al. Heritability and molecular-genetic basis of resting EEG activity: a genome-wide association study // Psychophysiology. 2014. V. 51. № 12. P. 1225.
  8. Gatt J.M., Kuan S.A., Dobson-Stone C. et al. Association between BDNF Val66Met polymorphism and trait depression is mediated via resting EEG alpha band activity // Biol. Psychol. 2008. V. 79. № 2. P. 275.
  9. Roy N., Barry R.J., Fernandez F.E. et al. Electrophysiological correlates of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism // Sci. Rep. 2020. V. 10. № 1. P. 17915.
  10. Zoon H.F., Veth C.P., Arns M. et al. EEG alpha power as an intermediate measure between brain-derived neurotrophic factor Val66Met and depression severity in patients with major depressive disorder // J. Clin. Neurophysiol. 2013. V. 30. № 3. P. 261.
  11. Bachmann V., Klein C., Bodenmann S. et al. The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state-specificity // Sleep. 2012. V. 35. № 3. P. 335.
  12. Janssens S., Sack A.T., Ten Oever S., de Graaf T.A. Calibrating rhythmic stimulation parameters to individual electroencephalography markers: The consistency of individual alpha frequency in practical lab settings // Eur. J. Neurosci. 2022. V. 55. № 11–12. P. 3418.
  13. Vandenbosch M., van ‘t Ent D., Boomsma D.I. et al. EEG-based age-prediction models as stable and heritable indicators of brain maturational level in children and adolescents // Hum. Brain Mapp. 2019. V. 40. № 6. P. 1919.
  14. Valdés-Hernández P.A., Ojeda-González A., Martínez-Montes E. et al. White matter architecture rather than cortical surface area correlates with the EEG alpha rhythm // Neuroimage. 2010. V. 49. № 3. P. 2328.
  15. Grandy T.H., Werkle-Bergner M., Chicherio C. et al. Individual alpha peak frequency is related to latent factors of general cognitive abilitie // Neuroimage. 2013. V. 79. P. 10.
  16. Rathee S., Bhatia D., Punia V., Singh R. Peak Alpha Frequency in Relation to Cognitive Performance // J. Neurosci. Rural Pract. 2020. V. 11. № 3. P. 416.
  17. Lopes da Silva F. EEG and MEG: relevance to neuroscience // Neuron. 2013. V. 80. № 5. P. 1112.
  18. Машеров Е.Л. Электрохимическая обратная связь, как один из возможных механизмов генерации низкочастотной составляющей биолектрической активности мозга // Биофизика. 2019. Т. 64. № 3. С. 572.
  19. Базанова О.М. Вариабельность и воспроизводимость индивидуальной частоты альфа-ритма ЭЭГ в зависимости от экспериментальных условий // Журн. высш. нервн. деят. им. И.П. Павлова. 2011. Т. 61. № 1. С. 102.
  20. Scally B., Burke M.R., Bunce D., Delvenne J.F. Resting-state EEG power and connectivity are associated with alpha peak frequency slowing in healthy aging // Neurobiol. Aging. 2018. V. 71. P. 149.
  21. Вольф Н.В., Приводнова Е.Ю., Базовкина Д.В. Полиморфизм stin2vntr гена транспортёра серотонина: ассоциации с эффективностью кратковременной памяти у молодых и пожилых испытуемых // Журн. высш. нервн. деят. им. И.П. Павлова. 2019. Т. 69. № 5. С. 570.
  22. Sheikh H.I., Hayden E.P., Kryski K.R. et al. Genotyping the BDNF rs6265 (val66met) polymorphism by one-step amplified refractory mutation system PCR // Psychiatr Genet. 2010. V. 20. № 3. P. 109.
  23. Angelakis E., Lubar J.F., Stathopoulou S., Kounios J. Peak alpha frequency: an electroencephalographic measure of cognitive preparedness // Clin. Neurophysiol. 2004. V. 115. № 4. P. 887.
  24. West S.G., Finch J.F., Curran P.J. Structural equation models with non-normal variables / Structural equation modeling: Concepts, issues and applications // Ed. Hoyle R.H. Thousand Oaks, CA: Sage, 1995. P. 56.
  25. Benjamini Y., Hochberg Y. Controlling the False Discovery Rate – A Practical and Powerful Approach to Multiple Testing // J. R. Stat. Soc. Ser. B Methodol. 1995. V. 57. № 1. P. 289.
  26. Jones R., Craig G., Bhattacharya J. Brain-Derived Neurotrophic Factor Val66Met Polymorphism Is Associated with a Reduced ERP Component Indexing Emotional Recollection // Front. Psychol. 2019. V. 10. P. 1922.
  27. Puttaert D., Wens V., Fery P. et al. Decreased Alpha Peak Frequency Is Linked to Episodic Memory Impairment in Pathological Aging // Front. Aging Neurosci. 2021. V. 13. P. 711375.
  28. Miyajima F., Ollier W., Mayes A. et al. Brain-derived neurotrophic factor polymorphism Val66Met influences cognitive abilities in the elderly // Genes Brain Behav. 2008. V. 7. № 4. P. 411.
  29. Brueggen K., Fiala C., Berger C. et al. Early Changes in Alpha Band Power and DMN BOLD Activity in Alzheimer’s Disease: A Simultaneous Resting State EEG-fMRI Study // Front. Aging Neurosci. 2017. V. 9. P. 319.
  30. Wu J., Zhou Q., Li J. et al. Decreased resting-state alpha-band activation and functional connectivity after sleep deprivation // Sci. Rep. 2021. V. 11. № 1. P. 484.
  31. Händel B., Haarmeier T., Jensen O. Alpha Oscillations Correlate with the Successful Inhibition of Unattended Stimuli // J. Cogn. Neurosci. 2011. V. 23. № 9. P. 2494.
  32. Cohen J. Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum, 1988. P. 590.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (75KB)
3.

Жүктеу (47KB)
4.

Жүктеу (149KB)

© Е.Ю. Приводнова, Н.В. Вольф, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».