Encephalopathy of Prematurity: Invisible Cause of the Cognitive and Behavioural Disorders

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article explores a relatively new concept in pediatrics, neonatology and neurology – encephalopathy of prematurity (EoP). The development of understanding of the term “encephalopathy” itself is considered. It is shown that the state occurs in premature babies predominantly in the middle of pregnancy, and may be caused by neuroinflammation, impaired oligodendrocytes maturation, hypomyelination, cerebral cortex volume reduction. EoP represents a sofisticated brain damage in a preterm baby involving gray matter, especially interneurons (axonal-neuronal disease), non-cystic leukomalacia (microglia activation) with nonspecific manifestation in neonatal period, and cognitive and behavioral disorders in early childhood. Possible mechanisms of early intervention, EoP targeted therapy, and its consequences in later childhood are discussed.

About the authors

А. B. Palchik

Saint-Petersburg State Pediatric Medical University, Ministry of Health Care of the Russian Federation

Author for correspondence.
Email: xander57@mail.ru
Russia, St. Petersburg

References

  1. Пальчик А.Б., Шабалов Н.П. Гипоксически-ишемическая энцефалопатия новорожденных. М.: МЕДпресс-информ, 2020. 302 с.
  2. Principles and Practice of Child Neurology in Infancy / Ed. Kennedy C. London: MacKeith Press, 2012. 362 p.
  3. Neonatal Encephalopathy and Cerebral Palsy (Defining the Pathogenesis and Pathophysiology). Washington, American College of Obstetricians and Gynecologists, 2003. 94 p.
  4. Volpe J.J. Neurology of the Newborn. Philadelphia: Saunders, 2008. 1094 p.
  5. Volpe J.J. The encephalopathy of prematurity–brain injury and impaired brain development inextricably intertwined // Semin. Pediatr. Neurol. 2009. V. 16. № 4. P. 167.
  6. Fleiss B., Gressens P., Stolp H.B. Cortical Gray Matter Injury in Encephalopathy of Prematurity: Link to Neurodevelopmental Disorders // Front. Neurol. 2020. V. 11. P. 575.
  7. Ananth C.V., Vintzileos A.M. Medically indicated preterm birth: recognizing the importance of the problem // Clin. Perinatol. 2008. V. 35. № 1. P. 53.
  8. Dammann O., Leviton A. Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn // Pediatr. Res. 1997. V. 42. № 1. P. 1.
  9. Hagberg H., Mallard C., Ferriero D.M. et al. The role of inflammation in perinatal brain injury // Nat. Rev. Neurol. 2015. V. 11. № 4. P. 192.
  10. Kuban K.C., O’Shea T.M., Allred E.N. et al. The breadth and type of systemic inflammation and the risk of adverse neurological outcomes in extremely low gestation newborns // Pediatr. Neurol. 2015. V. 52. № 1. P. 42.
  11. Lau J., Magee F., Qiu Z. et al. Chorioamnionitis with a fetal inflammatory response is associated with higher neonatal mortality, morbidity, and resource use than chorioamnionitis displaying a maternal inflammatory response only // Am. J. Obstet. Gynecol. 2005. V. 193. № 3. Pt. 1. P. 708.
  12. Manley B.J., Owen L.S., Hooper S.B. et al. Towards evidence-based resuscitation of the newborn infant // Lancet. 2017. V. 389. № 10079. P. 1639.
  13. Obst S., Herz J., Alcazar M.A.A. et al. Perinatal Hyperoxia and Developmental Consequences on the Lung-Brain Axis // Oxid. Med. Cell. Longev. 2022. V. 2022. P. 5784146.
  14. Pang Y., Dai X., Roller A. et al. Early postnatal lipopolysaccharide exposure leads to enhanced neurogenesis and impaired communicative functions in rats // PLoS One. 2016. V. 11. № 10. P. e0164403.
  15. Stolp H.B., Turnquist C., Dziegielewska K.M. et al. Reduced ventricular proliferation in the foetal cortex following maternal inflammation in the mouse // Brain. 2011. V. 134. Pt. 11. P. 3236.
  16. Dommergues M.A., Plaisant F., Verney C., Gressens P. Early microglial activation following neonatal excitotoxic brain damage in mice: a potential target for neuroprotection // Neuroscience. 2003. V. 121. № 3. P. 619.
  17. Faustino J.V., Wang X., Johnson C.E. et al. Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke // J. Neurosci. 2011. V. 31. № 36. P. 12992.
  18. Fernández–López D., Faustino J., Klibanov A.L. et al. Microglial cells prevent hemorrhage in neonatal focal arterial stroke // J. Neurosci. 2016. V. 36. № 10. P. 2881.
  19. Lafemina M.J., Sheldon R.A., Ferriero D.M. Acute hypoxia-ischemia results in hydrogen peroxide accumulation in neonatal but not adult mouse brain // Pediatr. Res. 2006. V. 59. № 5. P. 680.
  20. Van Steenwinckel J., Schang A.L., Krishnan M.L. et al. Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain // Brain. 2019. V. 142. № 12. P. 3806.
  21. Stolp H.B., Fleiss B., Arai Y. et al. Interneuron Development is disrupted in preterm brains with diffuse white matter injury: observations in mouse and human // Front. Physiol. 2019. V. 10. P. 955.
  22. Ball G., Srinivasan L., Aljabar P. et al. Development of cortical microstructure in the preterm human brain // Proc. Natl. Acad. Sci. USA. 2013. V. 110. № 23. P. 9541.
  23. Ball G., Boardman J.P., Aljabar P. et al. The influence of preterm birth on the developing thalamocortical connectome // Cortex. 2013. V. 49. № 6. P. 1711.
  24. Pandit A.S., Robinson E., Aljabar P. et al. Whole-brain mapping of structural connectivity in infants reveals altered connection strength associated with growth and preterm birth // Cereb. Cortex. 2014. V. 24. № 9. P. 2324.
  25. Bayly P.V., Taber L.A., Kroenke C.D. Mechanical forces in cerebral cortical folding: a review of measurements and models // J. Mech. Behav. Biomed. Mater. 2014. V. 29. P. 568.
  26. Llinares–Benadero C., Borrell V. Deconstructing cortical folding: genetic, cellular and mechanical determinants // Nat. Rev. Neurosci. 2019. V. 20. № 3. P. 161.
  27. Striedter G.F., Srinivasan S., Monuki E.S. Cortical folding: when, where, how, and why // Annu. Rev. Neurosci. 2015. V. 38. P. 291.
  28. Пальчик А.Б., Понятишин А.Е., Федорова Л.А. Неврология недоношенных детей. М.: МЕДпресс-информ, 2021. 405 с.
  29. Гузева В.И., Пальчик А.Б., Понятишин А.Е. и др. Гипоксические поражения головного мозга у недоношенных новорожденных. Федеральное руководство по детской неврологии (под ред. В.И. Гузевой). М.: ООО “МК”, 2016. С. 42.
  30. Ball G., Aljabar P., Arichi T. et al. Machine-learning to characterise neonatal functional connectivity in the preterm brain // Neuroimage. 2016. V. 124. Pt. A. P. 267.
  31. Bouyssi–Kobar M., De Asis-Cruz J., Murnick J. et al. Altered functional brain network integration, segregation, and modularity in infants born very preterm at term-equivalent age // J. Pediatr. 2019. V. 213. P. 13.
  32. Gozdas E., Parikh N.A., Merhar S.L. et al. Altered functional network connectivity in preterm infants: antecedents of cognitive and motor impairments? // Brain Struct. Funct. 2018. V. 223. № 8. P. 3665.
  33. Rathbone R., Counsell S.J., Kapellou O. et al. Perinatal cortical growth and childhood neurocognitive abilities // Neurology. 2011. V. 77. № 16. P. 1510.
  34. Tataranno M.L., Claessens N.H.P., Moeskops P. et al. Changes in brain morphology and microstructure in relation to early brain activity in extremely preterm infants // Pediatr. Res. 2018. V. 83. № 4. P. 834.
  35. Whitehead K., Jones L., Laudiano–Dray M.P. et al. Altered cortical processing of somatosensory input in pre-term infants who had high-grade germinal matrix-intraventricular haemorrhage // Neuroimage Clin. 2020. V. 25. P. 102095.
  36. Galinsky R., Draghi V., Wassink G. et al. Magnesium sulfate reduces EEG activity but is not neuroprotective after asphyxia in preterm fetal sheep // J. Cereb. Blood Flow Metab. 2017. V. 37. № 4. P. 1362.
  37. van de Looij Y., Chatagner A., Quairiaux C. et al. Multi-modal assessment of long-term erythropoietin treatment after neonatal hypoxic-ischemic injury in rat brain // PLoS One. 2014. V. 9. № 4. P. e95643.
  38. Mordel J., Sheikh A., Tsohataridis S. et al. Mild systemic inflammation and moderate hypoxia transiently alter neuronal excitability in mouse somatosensory cortex // Neurobiol. Dis. 2016. V. 88. P. 29.
  39. Bowers K., Wink L.K., Pottenger A. et al. Phenotypic differences in individuals with autism spectrum disorder born preterm and at term gestation // Autism. 2015. V. 19. № 6. P. 758.
  40. Elgen I., Sommerfelt K., Markestad T. Population based, controlled study of behavioural problems and psychiatric disorders in low birthweight children at 11 years of age // Arch. Dis. Child. Fetal Neonatal Ed. 2002. V. 87. № 2. P. F128.
  41. Herradón G., Pérez–García C. Targeting midkine and pleiotrophin signalling pathways in addiction and neurodegenerative disorders: recent progress and perspectives // Br. J. Pharmacol. 2014. V. 171. № 4. P. 837.
  42. Kim Y.B., Ryu J.K., Lee H.J. et al. Midkine, heparin-binding growth factor, blocks kainic acid-induced seizure and neuronal cell death in mouse hippocampus // BMC Neurosci. 2010. V. 11. P. 42.
  43. Takada J., Ooboshi H., Ago T. et al. Postischemic gene transfer of midkine, a neurotrophic factor, protects against focal brain ischemia // Gene Ther. 2005. V. 12. № 6. P. 487.
  44. Ross-Munro E., Kwa F., Kreiner J. et al. Midkine: The Who, What, Where, and When of a Promising Neurotrophic Therapy for Perinatal Brain Injury // Front. Neurol. 2020. V. 11. P. 568814.
  45. Vasung L., Lepage C., Radoš M. et al. Quantitative and qualitative analysis of transient fetal compartments during prenatal human brain development // Front. Neuroanat. 2016. V. 10. P. 11.
  46. Volpe J.J. Microglia: Newly discovered complexity could lead to targeted therapy for neonatal white matter injury and dysmaturation // J. Neonatal-Perinatal Med. 2019. V. 12. № 3. P. 239.
  47. Hammond T.R., Robinton D., Stevens B. Microglia and the brain: Complementary partners in development and disease // Annu. Rev. Cell. Dev. Biol. 2018. V. 34. P. 523.
  48. Ponnusamy V., Yip P.K. The role of microRNAs in newborn brain development and hypoxic ischaemic encephalopathy // Neuropharmacology. 2019. V. 149. P. 55.
  49. Yang Y., Ye Y., Kong C. et al. MiR-124 Enriched exosomes promoted the M2 polarization of microglia and enhanced hippocampus neurogenesis after traumatic brain injury by inhibiting TLR4 pathway // Neurochem. Res. 2019. V. 44. № 4. P. 811.
  50. Miron V.E., Boyd A., Zhao J.W. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination // Nat. Neurosci. 2013. V. 16. № 9. P. 1211.
  51. Biran V., Phan Duy A., Decobert F. et al. Is melatonin ready to be used in preterm infants as a neuroprotectant? // Dev. Med. Child. Neurol. 2014. V. 56. № 8. P. 717.
  52. Vaes J.E.G., van Kammen C.M., Trayford C. et al. Intranasal mesenchymal stem cell therapy to boost myelination after encephalopathy of prematurity // Glia. 2021. V. 69. № 3. P. 655.
  53. Vaes J.E.G., Kosmeijer C.M., Kaal M. et al. Regenerative Therapies to Restore Interneuron Disturbances in Experimental Models of Encephalopathy of Prematurity // Int. J. Mol. Sci. 2020. V. 22. № 1. P. 211.
  54. Heylen S.L., Gelders Y.G. Risperidone, a new antipsychotic with serotonin 5-HT2 and dopamine D2 antagonistic properties // Clin. Neuropharmacol. 1992. V. 15. Suppl 1. Pt. A. P. 180A.
  55. Mattingly G.W., Wilson J., Rostain A.L. A clinician’s guide to ADHD treatment options // Postgrad. Med. 2017. V. 129. № 7. P. 657.
  56. Hong M.P., Erickson C.A. Investigational drugs in early-stage clinical trials for autism spectrum disorder // Expert Opin. Investig. Drugs. 2019. V. 28. № 8. P. 709.
  57. Hill-Yardin E.L., McKeown S.J., Novarino G., Grabrucker A.M. Extracerebral dysfunction in animal models of autism spectrum disorder // Adv. Anat. Embryol. Cell Biol. 2017. V. 224. P. 159.
  58. Iannone L.F., Gomez–Eguilaz M., Citaro R., Russo E. The potential role of interventions impacting on gut-microbiota in epilepsy // Expert Rev. Clin. Pharmacol. 2020. V. 13. № 4. P. 423.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (319KB)
3.

Download (494KB)

Copyright (c) 2023 А.Б. Пальчик

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».