OCT-Diagnostics of Optic Nerve Disc Edema in Space Flight. Analysis of the Retina, Optic Disc and Neuroretinal Circle Thickness

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article analysis the state of 24 eyes of 12 Russian cosmonauts who made long-term space flights to the ISS in the period from 2016 to 2021. The analysis was carried out by HRA and OCT images study, using the Display function included in the program of Spectralis OCT device. The thickness of the optic nerve head and retina was determined according to the hourly meridians, which allowed us to accurately diagnose and classify the optic disc edema according to the stages of the Frisen scale. By measuring the percentage ratio of the maximum thickness of the nerve disc within its boundaries to the minimum thickness of the retina outside the boundaries of the disc, we determined the digital value of prominence in each temporal hourly meridian, limited by the temporal sector of 95°. The presence of prominence in the extreme temporal meridians, or its absence at all, we regarded as a physiologically healthy state of the optic disc, corresponding to stage 0. This stage was established in 13 eyes (54.2%). Stage I (7 eyes (29.2%)) was diagnosed based on the absence of prominence in the horizontal temporal meridian. The defining feature of stage II is an increase in prominence in the temporal horizontal meridian by more than 10%. Subclinical stage II (prominence is increased, but less than 10%) was diagnosed in two eyes of two cosmonauts (8.3%). Clinically pronounced papilledema II–III stages was diagnosed in two eyes (8.3%) in one cosmonaut, where the maximum value of prominence was 70.1% in the right eye, and on the left – 40.1% in the horizontal meridian. The study shows that an increase in prominence up to 70% in the temporal horizontal meridian at stage III of edema leads to neurodegeneration of the optic nerve fibers in space flight. At stages II–III of edema, an increase in the minimum thickness of the neuroretinal rim compared with all other observations. At 0 – II subclinical stage, according to this indicator, it was impossible to differentiate the state of the optic disc.

About the authors

I. A. Makarov

Institute of Biomedical Problems of the RAS

Author for correspondence.
Email: imak-ncn@mail.ru
Russia, Moscow

I. V. Alferova

Institute of Biomedical Problems of the RAS

Email: imak-ncn@mail.ru
Russia, Moscow

V. V. Bogomolov

Institute of Biomedical Problems of the RAS

Email: imak-ncn@mail.ru
Russia, Moscow

Yu. I. Voronkov

Institute of Biomedical Problems of the RAS

Email: imak-ncn@mail.ru
Russia, Moscow

D. A. Anikeev

Institute of Biomedical Problems of the RAS

Email: imak-ncn@mail.ru
Russia, Moscow

References

  1. Макаров И.А., Богомолов В.В., Воронков Ю.И. и др. ОКТ-диагностика отека зрительного нерва в космическом полете. Анализ толщины перипапиллярной сетчатки // Авиакосм. и экол. мед. 2021. Т. 55. № 4. С. 36. Makarov I.A., Bogomolov V.V., Voronkov Y.I. et al. [OCT-diagnostics of the ocular nerve edema in space flight: analysis of the peripapillary retinal thickness] // Aviakosm. Ecolog. Med. 2021. V. 55. № 4. P. 36.
  2. Lee A.G., Mader T.H., Gibson C.R. et al. Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: a review and an update // NPJ Microgravity. 2020. V. 6. P. 7.
  3. Patel N., Pass A., Mason S. et al. Optical coherence tomography analysis of the optic nerve head and surrounding structures in long-duration International space station astronauts // JAMA Ophthalmol. 2018. V. 136. № 2. P. 193.
  4. Falavarjani K.G., Sanjari M.S. Detection of optic disc oedema using optical coherence tomography // Br. J. Ophthalmol. 2012. V. 96. № 10. P. 1355.
  5. Hayreh S.S. Optic disc edema in raised intracranial pressure. Pathogenesis // Arch. Ophthalmol. 1977. V. 95. № 9. P. 1553.
  6. Frisen L. Swelling of the optic nerve head: a staging scheme // J. Neurol. Neurosurg. Psych. 1982. V. 45. № 1. P. 13.
  7. Smith A., Beare N.A., Musumba C.O. et al. New classification of acute papilledema in children with severe malaria // J. Pediatr. Neurol. 2009. V. 7. № 4. P. 381.
  8. Макаров И.А., Даниличев С.Н. Отек зрительного нерва в космическом полете: патогенез, диагностика и мониторинг // Офтальмология. 2020. Т. 17. № 4. С. 752. Makarov I.A., Danilichev S.N. Papilledema in space flight: pathogenesis, diagnostics and monitoring // Ophthalmology in Russia. 2020. V. 17. № 4. P. 752.
  9. Aumann S., Donner S., Focher J., Muller F. Optical coherence tomography (OCT): principle and technical realization. Ch. 3 / High resolution imaging in microscopy and ophthalmology: new frontiers in biomedical optics [Internet] // Ed. Bille J.F. Springer, 2019. https://doi.org/10.1007/978-3-030-16638-0_3
  10. Scott C.J., Kardon R.H., Lee A.G. et al. Diagnosis and grading of papilledema in patients with raised intracranial pressure using optical coherence tomography vs clinical expert assessment using a clinical staging scale // Arch. Ophthalmol. 2010. V. 128. № 6. P. 705.
  11. Liu K.C., Fleischman D., Lee A.G. et al. Current concepts of cerebrospinal fluid dynamics and the translaminar cribrosa pressure gradient: a paradigm of optic disk disease // Surv. Ophthalmol. 2020. V. 65. № 1. P. 48.
  12. Wojcik P., Kini A., Othman B.A. et al. Spaceflight associated neuro-ocular syndrome // Curr. Opin. Neurol. 2020. V. 33. № 1. P. 62.
  13. Savini G., Barboni P., Carbonelli M. et al. Optical coherence tomography for optic disc edema // Arch. Ophthalmol. 2011. V. 129. № 9. P. 1245.
  14. Spaide R.F. Retinal vascular cystoid macular edema // Retina. 2016. V. 36. № 10. P. 1823.
  15. Witschafter J.D., Rizzo F.J., Smiley B.C. Optic nerve axoplasm and papilledema // Surv. Ophthalmol. 1975. V. 20. № 1. P. 157.
  16. Tso M.O., Hayreh S.S. Optic disc edema in raised intracranial pressure. IV. Axoplasmic transport in experimental papilledema // Arch. Ophthalmol. 1977. V. 95. № 8. P. 1458.
  17. Van Staven G.P. Optic disc edema // Semin. Neurol. 2007. V. 27. № 3. P. 233.
  18. Jessen N.A., Munk A.S.F., Lundgaard I., Nedergaard M. The glymphatic system: a beginner’s guide // Neurochem. Res. 2015. V. 40. № 12. P. 2583.
  19. Thrane A.S., Thrane R.V., Nedergaard M. Drowning stars: reassessing the role of astrocytes in brain edema // Trends Neurosci. 2014. V. 37. № 11. P. 620.
  20. Wostyn P., Winne F.D., Stern C. et al. Potential involvement of the ocular glymphatic system in optic disc edema in astronauts // Aerosp. Med. Hum. Perform. 2020. V. 91. № 12. P. 975.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (2MB)
4.

Download (1MB)
5.

Download (1MB)

Copyright (c) 2022 И.А. Макаров, И.В. Алферова, В.В. Богомолов, Ю.И. Воронков, Д.А. Аникеев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies