Features of the Influence of the Autonomic Nervous System on the Regulatory and Metabolic Parameters of Lymphocytes in Healthy Children and Children with Special Health Abilities

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of the study was to study the content of biogenic monoamines (catecholamins and serotonin) and metabolic parameters (activities of succinate dehydrogenase and acid phosphatase) of lymphocytes in normal children and in children with special health abilities, depending on the type of autonomic regulation. The survey involved 168 children of primary school age, of these, 114 relatively healthy children and 54 children with intellectual disabilities (mild (F70) and moderate (F71) degree of mental retardation). The groups were comparable in terms of gender and age. In both studied groups, an increase in the parameters of succinate dehydrogenase and catecholamines from vagotonic to hypersympathicotonic types of the initial vegetative tone was recorded. Also, in the group of children with special health abilities, a decrease in the activity of acid phosphatase was found as the activity of the sympathetic division of the autonomic nervous system increased. In general, in healthy children, against the background of the prevailing eutonic type of autonomic regulation, the optimal regulatory and metabolic parameters of the cell are fixed, which determines sufficient adaptive responses in this group. In the group of children with disabilities, the dominant activity of the sympathetic division of the autonomic nervous system manifests itself at the cellular level as hypercatecholaminemia, reduced levels of serotonin and acid phosphatase activity.

About the authors

O. V. Smirnova

Scientific Research Institute for Medical Problems of the North SD RAS

Author for correspondence.
Email: ovsmirnova71@mail.ru
Russia, Krasnoyarsk

E. S. Ovcharenko

Scientific Research Institute for Medical Problems of the North SD RAS

Email: ovsmirnova71@mail.ru
Russia, Krasnoyarsk

E. V. Kasparov

Scientific Research Institute for Medical Problems of the North SD RAS

Email: ovsmirnova71@mail.ru
Russia, Krasnoyarsk

V. V. Fefelova

Scientific Research Institute for Medical Problems of the North SD RAS

Email: ovsmirnova71@mail.ru
Russia, Krasnoyarsk

References

  1. Rudd K.L., Yates T.M. The implications of sympathetic and parasympathetic regulatory coordination for understanding child adjustment // Dev. Psychobiol. 2018. V. 60. № 8. P. 1023.
  2. Mulkey S.B., du Plessis A.J. Autonomic nervous system development and its impact on neuropsychiatric outcome // Pediatr. Res. 2019. V. 85. № 2. P. 120.
  3. Неудахин Е.В., Морено И.Г. К вопросу патогенеза атеросклероза и коррекции атерогенных нарушений у детей // Русский медицинский журн. 2018. № 9. P. 62. Neudakhin E.V., Moreno I.G. [Revisiting the pathogenesis of atherosclerosis and correction of atherogenic disorders in children] // Russian Medical J. 2018. № 9. P. 62.
  4. Peña S., Baccichet E., Urbina M. et al. Effect of mirtazapine treatment on serotonin transporter in blood peripheral lymphocytes of major depression patients // Int. Immunopharmacol. 2005. V. 5. № 6. P. 1069.
  5. Barkan T., Peled A., Modai I. et al. Serotonin transporter characteristics in lymphocytes and platelets of male aggressive schizophrenia patients compared to non–aggressive schizophrenia patients // Eur. Neuropsychopharmacol. 2006. V. 16. № 8. P. 572.
  6. Marazziti D., Landi P., Baroni S. et al. The role of platelet/lymphocyte serotonin transporter in depression and beyond // Curr. Drug Targets. 2013. V. 14. № 5. P. 522.
  7. Romay-Tallon R., Rivera-Baltanas T., Allen J. et al. Comparative study of two protocols for quantitative image-analysis of serotonin transporter clustering in lymphocytes, a putative biomarker of therapeutic efficacy in major depression // Biomark. Res. 2017. V. 5. P. 27.
  8. Баевский Р.М., Кириллов О.И., Клецкин С.З. Математический анализ изменений сердечного ритма при стрессе. М.: Наука, 1984. 221 с. Baevsky R.M., Kirillov O.I., Kletskin S.Z. [The mathematical analysis of changes of a cardiac rhythm at stress]. M.: Science, 1984. 221 p.
  9. Нарциссов Р.П. Применение n-нитротетразолия фиолетового для количественной цитохимии дегидрогеназ лимфоцитов человека // Архив анатомии, гистологии и эмбриологии. 1969. Т. 56. № 5. С. 85. Narcissov R.P. [Application of n-nitrotetrazolium violet for quantitative cytochemistry dehydrogenases human lymphocytes] // Arh. Anat. Gistol. Ehmbriol. 1969. V. 56. № 5. P. 85.
  10. Goldberg A.F., Barka T. Acid phosphatase activity in human blood cells // Nature. 1962. V. 195. № 3438. P. 297.
  11. Новицкая В.П. Модификация метода определения моноаминов в лейкоцитах на мазках периферической крови // Клиническая и лабораторная диагностика. 2000. № 1. С. 24. Novitskaya V.P. [Modification of the method for determining monoamines in leukocytes on smears of peripheral blood] // Klin. Lab. Diagn. 2000. № 1. P. 24.
  12. Смирнова О.В., Овчаренко Е.С., Каспаров Э.В., Фефелова В.В. Параметры физического развития детей с особыми возможностями здоровья с различными типами исходного вегетативного тонуса // Рос. физиол. журн. им. И.М. Сеченова. 2021. Т. 107. № 1. С. 85. Smirnova O.V., Ovcharenko E.S., Kasparov E.V., Fefelova V.V. Parameters of physical development of children with special health possibilities with various types of initial vegetative tonus // Russ. J. Physiol. 2021. V. 107. № 1. P. 85.
  13. Ince L.M., Weber J., Scheiermann C. Control of leucocyte trafficking by stress–associated hormones // Front. Immunol. 2018. V. 9. P. 3143.
  14. Kohler-Dauner F., Roder E., Krause S. et al. Reduced caregiving quality measured during the strange situation procedure increases child’s autonomic nervous system stress response // Child Adolesc. Psychiatry Ment. Health. 2019. V. 13. P. 41.
  15. Wehrwein E.A., Orer H.S., Barman S.M. Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system // Compr. Physiol. 2016. V. 6. № 3. P. 1239.
  16. Колодяжная Т.А., Зайцева О.И., Зайцева Ж.Г., Игнатова И.А. Синдром вегетативной дисфункции у детей младшего школьного возраста: факторы риска и структурно-функциональное состояние мембран эритроцитов // SJLSA. 2021. Т. 13. № 4. С. 115. Kolodyazhnaya T.A., Zaitzeva O.I., Zaitzeva Gh.G., Ignatova I.A. [Syndrome of autonomic dysfunction in children of young school age: risk factors and structural and functional state of erythrocyte membranes] // S-JLSA. 2021. V. 13. № 4. P. 115.
  17. Elkhatib S.K., Case A.J. Autonomic regulation of T-lymphocytes: implications in cardiovascular disease // Pharmacol. Res. 2019. V. 146. P. 104292.
  18. Riessen R., Tschritter O., Janssens U., Haap M. Katecholamine: Pro und Kontra // Med. Klin. Intensivmed. Notfmed. 2016. V. 111. № 1. P. 37.
  19. Dhalla N.S., Ganguly P.K., Bhullar S.K., Tappia P.S. Role of catecholamines in the pathogenesis of diabetic cardiomyopathy // Can. J. Physiol. Pharmacol. 2019. V. 97. № 9. P. 815.
  20. Шайхелисламова М.В., Ситдикова А.А., Ситдиков Ф.Г. Взаимосвязь симпато-адреналовой системы, коры надпочечников и вегетативного тонуса у детей 7–9 летнего возраста // Физиология человека. 2008. Т. 34. № 2. С. 83. Shayhelislamova M.V., Sitdikova A.A., Sitdikov F.G. Interrelation between the sympathoadrenal system, adrenal cortex and autonomic tone in seven-to nine-year-old children // Human Physiology. 2008. V. 34. № 2. P. 206.
  21. Sica E., De Bernardi F., Nosetti L. et al. Catecholamines and children obstructive sleep apnea: a systematic review // Sleep Med. 2021. V. 87. P. 227.
  22. Kanova M., Kohout P. Serotonin-its synthesis and roles in the healthy and the critically Ill // Int. J. Mol. Sci. 2021. V. 22. № 9. P. 4837.
  23. Садыкова Д.И., Нигматуллина Р.Р., Афлятумова Г.Н. Роль серотонинергической системы в развитии заболеваний сердца и сосудов у детей // Казанский медицинский журн. 2015. Т. 96. № 4. P. 665. Sadykova D.I., Nigmatullina R.R., Aflyatumova G.N. [The role of serotonergic system in cardiovascular diseases development in children] // Kazan Medical J. 2015. V. 96. № 4. P. 665.
  24. Гостюхина А.А., Cамощина Т.А., Cайцев К.В. и др. Адаптивные реакции крыс после световых десинхронозов и физического переутомления // Бюллетень сибирской медицины. 2018. Т. 17. № 3. С. 22. Gostyukhina A.A., Zamoshchina T.A., Zaitsev K.V. et al. [Adaptive reactions of rats after light desynchronosis and physical overwork] // Bulletin of Siberian Medicine. 2018. V. 17. № 3. P. 22.
  25. Carhart-Harris R.L., Nutt D.J. Serotonin and brain function: a tale of two receptors // J. Psychopharmacol. 2017. V. 31. № 9. P. 1091.
  26. Brindley R.L., Bauer M.B., Walker L.A. et al. Adrenal serotonin derives from accumulation by the antidepressant-sensitive serotonin transporter // Pharmacol. Res. 2019. V. 140. P. 56.
  27. Троицкий М.С., Токарев А.Р., Паньшина М.В. Возможности немедикаментозной и лекарственной терапии тревожных расстройств (обзор литературы) // Вестник новых медицинских технологий. 2018. Т. 25. № 1. С. 61. Troitsky M.S., Tokarev A.R., Panshina M.V. [Possibilities of non-medicine and medicinal therapies of alert disorders (literature review)] // J. New Medical Technologies. 2018. V. 25. № 1. P. 61.
  28. Hildreth C.M., Padley J.R., Pilowsky P.M., Goodchild A.K. Impaired serotonergic regulation of heart rate may underlie reduced baroreflex sensitivity in an animal model of depression // Am. J. Physiol. Heart Circ. Physiol. 2008. V. 294. № 1. P. 474.
  29. Chang W.H., Lee I.H., Chi M.H. et al. Prefrontal cortex modulates the correlations between brain–derived neurotrophic factor level, serotonin, and the autonomic nervous system // Sci. Rep. 2018. V. 8. № 1. P. 2558.
  30. Lin S., Lee I.H., Tsai H. et al. The association between plasma cholesterol and the effect of tryptophan depletion on heart rate variability // Kaohsiung J. Med. Sci. 2019. V. 35. № 7. P. 440.
  31. Settas N., Faucz F.R., Stratakis C.A. Succinate dehydrogenase (SDH) deficiency, carney triad and the epigenome // Mol. Cell. Endocrinol. 2018. V. 469. P. 107.
  32. Moosavi B., Zhu X.L., Yang W.C., Yang G.F. Genetic, epigenetic and biochemical regulation of succinate dehydrogenase function // Biol. Chem. 2020. V. 401. № 3. P. 319.
  33. Rasheed M., Tarjan G. Succinate dehydrogenase complex: an updated review // Arch. Pathol. Lab. Med. 2018. V. 142. № 12. P. 1564.
  34. Farshbaf M.J., Kiani-Esfahani A. Succinate dehydrogenase: prospect for neurodegenerative diseases // Mitochondrion. 2018. V. 42. P. 77.
  35. Гурьева Е.Н., Морено И.Г., Неудахин Е.В. и др. Вегетативный статус и состояние тканевого энергообмена у детей с метаболическим синдромом и первичной артериальной гипертензией // Вопросы практической педиатрии. 2012. Т. 7. № 2. С. 78. Gur’eva E.N., Moreno I.G., Neudakhin E.V. et al. [The vegetative status and the state of tissue energy metabolism in children with metabolic syndrome and primary arterial hypertension] // Clinical Practice in Pediatrics. 2012. V. 7. № 2. P. 78.
  36. Хундерякова Н.В., Захарченко М.В., Захарченко А.В. и др. Исследование цитобиохимическим методом сигнального действия янтарной кислоты на митохондрии // Биологические мембраны. 2012. Т. 29. № 6. С. 442. Khunderyakova N.V., Zakharchenko M.V., Zakharchenko A.V. et al. [Signal action of succinate on mitohondria studied by cytobiochemical method] // Biologicheskie Membrany. 2012. V. 29. № 6. P. 442.
  37. Fedotcheva N., Leont’ev D., Kondrashova M. Reciprocal effect of adrenaline and serotonin on oxidation of succinate and a-ketoglutarate in rat liver and brain homogenates // Mitochondrion. 2002. V. 1. № 6. P. 519.
  38. Manhas N., Duong Q.V., Lee P. et al. Computationally modeling mammalian succinate dehydrogenase kinetics identifies the origins and primary determinants of ROS production // J. Biol. Chem. 2020. V. 295. № 45. P. 15262.
  39. Титко О.В. Энергетический обмен в головном мозге при окислительном стрессе // Вестник Гродненского государственного университета имени Янки Купалы. Серия 5. Экономика. Социология. Биология. 2019. Т. 9. № 1. С. 144. Titko O.V. [Energy metabolism in the brain during oxidative stress] // Vesnik of Yanka Kupala State University of Grodno. Series 5. Economics. Sociology. Biology. 2019. V. 9. № 1. P. 144.
  40. Anand A., Srivastava P.K. A molecular description of acid phosphatase // Appl. Biochem. Biotechnol. 2012. V. 167. № 8. P. 2174.
  41. Цыганкова О.В., Бондарева З.Г., Рагино Ю.И. и др. Уровни маркерных лизосомальных гидролаз у мужчин различного возраста с ишемической болезнью сердца через призму уровня половых стероидов // Атеросклероз. 2015. Т. 11. № 3. С. 42. Tsygankova O.V., Bondareva Z.G., Ragino Yu.I. et al. [Levels of marker lysosomal hydrolases in men of different age with ischemic heart disease through levels of sex steroids] // Ateroskleroz. 2015. V. 11. № 3. P. 42.
  42. Аминова Г.Г. Определение активности кислой фосфатазы в нервной ткани // Морфология. 2016. Т. 150. № 6. С. 66. Aminova G.G. Demonstration of acid phosphatase activity in nervous tissue // Neurosci. Behav Physiol. 2017. V. 47. № 8. P. 1015.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (69KB)
3.

Download (74KB)
4.

Download (80KB)

Copyright (c) 2023 О.В. Смирнова, Е.С. Овчаренко, Э.В. Каспаров, В.В. Фефелова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies