Supression of Alpha- and Beta-Oscillations during Virtual Social Interactions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim was to study the oscillatory dynamics accompanying the processes of interaction with the virtual character and the localization of the revealed effects. 42 subjects (of which 25 are women) aged 18 to 41 years took part in the study. During the EEG recording, the subjects had to interact with the virtual character by choosing one of three options (“offer friendship”, “attack” or “avoid contact”). Faces with 5 types of emotional expressions (angry, happy, frightened, sad and neutral) were used. An analysis of equivalent dipoles revealed that the choice of active interaction (to attack or offer friendship), compared with the avoidance of interaction, was accompanied by a large decrease in α- and β-rhythms, which may be associated with the processes of understanding the virtual character’s intentions. The choice of friendship versus avoidance of interaction was accompanied by an increase in δ-rhythm, which may indicate the presence of a motivational component. The revealed effects were found in clusters of equivalent dipoles, the localization of which coincides with the structures of the mentalization network and the network of mirror neurons involved in the processes of people’s intent assessment.

About the authors

A. V. Bocharov

Scientific Research Institute of Neurosciences and Medicine; Novosibirsk State University

Author for correspondence.
Email: bocharov@physiol.ru
Russia, Novosibirsk; Russia, Novosibirsk

A. N. Savostyanov

Scientific Research Institute of Neurosciences and Medicine; Novosibirsk State University

Email: bocharov@physiol.ru
Russia, Novosibirsk; Russia, Novosibirsk

A. E. Saprygin

Scientific Research Institute of Neurosciences and Medicine

Email: bocharov@physiol.ru
Russia, Novosibirsk

E. A. Merkulova

Scientific Research Institute of Neurosciences and Medicine

Email: bocharov@physiol.ru
Russia, Novosibirsk

S. S. Tamozhnikov

Scientific Research Institute of Neurosciences and Medicine

Email: bocharov@physiol.ru
Russia, Novosibirsk

E. A. Proshina

Scientific Research Institute of Neurosciences and Medicine

Email: bocharov@physiol.ru
Russia, Novosibirsk

G. G. Knyazev

Scientific Research Institute of Neurosciences and Medicine

Email: bocharov@physiol.ru
Russia, Novosibirsk

References

  1. Premack D., Woodruff G. Does the chimpanzee have a theory of mind? // Behav. Brain Sci. 1978. V. 1. P. 515.
  2. Schurz M., Radua J., Aichhorn M. et al. Fractionating theory of mind: a meta-analysis of functional brain imaging studies // Neurosci. Biobehav. Rev. 2014. V. 42. P. 9.
  3. Redcay E., Schilbach L. Using second-person neuroscience to elucidate the mechanisms of social interaction // Nat. Rev. Neurosci. 2019. V. 20. № 8. P. 495.
  4. Centelles L., Assaiante C., Nazarian B. et al. Recruitment of both the mirror and the mentalizing networks when observing social interactions depicted by point-lights: a neuroimaging study // Plos One. 2011. V. 6. № 1. P. 15749.
  5. Liew S., Han S., Aziz-Zadeh L. Familiarity modulates mirror neuron and mentalizing regions during intention understanding // Hum. Brain Mapp. 2010. V. 32. № 11. P. 1986.
  6. Ciaramidaro A., Becchio C., Colle L. et al. Do you mean me? Communicative intentions recruit the mirror and the mentalizing system // Soc. Cogn. Affect. Neurosci. 2014. V. 9. № 7. P. 909.
  7. Столбков Ю.К., Герасименко Ю.П. Когнитивная двигательная реабилитация: воображение и наблюдение моторных действий // Физиология человека. 2021. 47. № 1. С. 123. Stolbkov Y.K., Gerasimenko Y.P. Cognitive motor rehabilitation: imagination and observation of motor actions // Human Physiology. 2021. V. 47. № 1. P. 104.
  8. Kourtis D., Sebanz N., Knoblich G. Favouritism in the motor system: social interaction modulates action simulation // Biol. Lett. 2010. V. 6. № 6. P. 758.
  9. Becchio C., Cavallo A., Begliomini C. et al. Social grasping: from mirroring to mentalizing // Neuroimage. 2012. V. 61. № 1. P. 240.
  10. Rizzolatti G., Craighero L. The mirror-neuron system // Ann. Rev. Neurosci. 2004. V. 27. P. 169.
  11. Gallese V., Goldman A. Mirror neurons and the simulation theory of mind-reading // Trends Cogn. Sci. 1998. V. 2. № 12. P. 493.
  12. Di Pellegrino G., Fadiga L., Fogassi L. et al. Understanding motor events: a neurophysiological study // Exp. Brain Res. 1992. V. 91. № 1. P. 176.
  13. Махин С.А. Система “зеркальных нейронов”: Актуальные достижения и перспективы ЭЭГ-исследований // Ученые записки Крымского федерального университета им. В.И. Вернадского. Биология. Химия. 2012. Т. 25. № 1. С. 142. Makhin S.A. “Mirror neurons” system: current achievements and research trends in use of the EEG based methods // Scientific Notes of Taurida V.I. Vernadsky National University. Biology. Chemistry. 2012. V. 25. № 1. Р. 142.
  14. Pfurtscheller G., Brunner C., Schlögl A., Da Silva F.L. Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks // NeuroImage. 2006. V. 31. № 1. P. 153.
  15. Arnstein D., Cui F., Keysers C. et al. μ-Suppression during action observation and execution correlates with BOLD in dorsal premotor, inferior parietal, and SI cortices // J. Neurosci. 2011. V. 31. № 40. P. 14243.
  16. Oberman L.M., Pineda J.A., Ramachandran V.S. The human mirror neuron system: a link between action observation and social skills // Soc. Cogn. Affect. Neurosci. 2007. V. 2. № 1. P. 62.
  17. Knyazev G., Merkulova E., Savostyanov A. et al. Personality and EEG correlates of reactive social behavior // Neuropsychologia. 2019. V. 124. P. 98.
  18. Lundqvist D., Flykt A., Ohman A. The Karolinska directed emotional faces (KDEF). CD ROM from Department of Clinical Neuroscience // Psychology section, Karolinska Institutet. 1998. V. 91. № 630. P. 2.
  19. Ohman A., Flykt A., Lundqvist D. Evolutionary perspectives, psychophysiological data, and neuropsychological mechanisms / Cognitive neuroscience of emotion. Oxford University Press, 2002. 430 p.
  20. Delorme A., Makeig S. EEGLAB: an open source toolbox for analysis of single- trial EEG dynamics including independent component analysis // J. Neurosci. Methods. 2004. V. 134. № 1. P. 9.
  21. Lopes P., Salovey P., Cote S. et al. Emotion regulation abilities and the quality of social interaction // Emotion. 2005. V. 5. № 1. P. 113.
  22. Knyazev G., Bocharov A., Slobodskaya H., Ryabichenko T. Personality-linked biases in perception of emotional facial expressions // Pers. Individ. Differ. 2008. V. 44. № 5. P. 1093.
  23. Pineda J. Sensorimotor cortex as a critical component of an “extended”mirror neuron system: Does it solve the development, correspondence, and control problems in mirroring? // Behav. Brain Funct. 2008. V. 4. P. 47.
  24. Babiloni C., Del Percio C., Vecchio F. et al. Alpha, beta and gamma electrocorticographic rhythms in somatosensory, motor, premotor and prefrontal cortical areas differ in movement execution and observation in humans // Clin. Neurophysiol. 2016. V. 127. № 1. P. 641.
  25. Yuan H., Liu T., Szarkowski R. et al. Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: an EEG and fMRI study of motor imagery and movements // Neuroimage. 2010. V. 49. № 3. P. 2596.
  26. Perry A., Trojeb N.F., Bentin S. Exploring motor system contributions to the perception of social information: evidence from EEG activity in the mu/alpha frequency range // Soc. Neurosce. 2010. V. 5. № 3. P. 272.
  27. Gevins A., Smith M.E., McEvoy L., Yu D. High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice // Cereb. Cortex. 1997. V. 7. № 4. P. 374.
  28. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis // Brain Res. Rev. 1999. V. 29. № 2–3. P. 169.
  29. Pfurtscheller G., Da Silva F.L. Event-related EEG/MEG synchronization and desynchronization: Basic principles // Clin. Neurophysiol. 1999. V. 110. № 11. P. 1842.
  30. Barry R.J., Clarke A.R., Johnstone S.J. et al. EEG differences between eyes-closed and eyes-open resting conditions // Clin. Neurophysiol. 2007. V. 118. № 12. P. 2765.
  31. Pfurtscheller G., Neuper C. Motor imagery activates primary sensorimotor area in humans // Neurosci. Let. 1997. V. 239. № 2–3. P. 65.
  32. Knyazev G.G. Motivation, emotion, and their inhibitory control mirrored in brain oscillations // Neurosci. Biobehav. Rev. 2007. V. 31. № 3. P. 377.
  33. hackman A.J., Salomons T.V., Slagter H.A. et al. The integration of negative affect, pain and cognitive control in the cingulate cortex // Nat. Rev. Neurosci. 2011. V. 12. № 3. P. 154
  34. Apps M.A., Rushworth M.F., Chang S.W. The anterior cingulate gyrus and social cognition: tracking the motivation of others // Neuron. 2016. V. 90. № 4. P. 692.
  35. Hill M.R., Boorman E.D., Fried I. Observational learning computations in neurons of the human anterior cingulate cortex // Nat. Commun. 2016. V. 7. P. 12722.
  36. Apps M.A., Sallet J. Social learning in the medial prefrontal cortex // Trends Cogn. Sci. 2017. V. 21. № 3. P. 151.
  37. Balconi M., Vanutelli M.E. Empathy in negative and positive interpersonal interactions. What is the relationship between central (EEG, fNIRS) and peripheral (autonomic) neurophysiological responses? // Adv. Cogn. Psychol. 2017. V. 13. № 1. P. 105.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (674KB)
3.

Download (663KB)
4.

Download (909KB)
5.

Download (1MB)
6.

Download (686KB)

Copyright (c) 2022 А.В. Бочаров, А.Н. Савостьянов, А.Е. Сапрыгин, Е.А. Меркулова, С.С. Таможников, Е.А. Прошина, Г.Г. Князев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies