Amplitude reconstruction of acoustic emission signals on the base of its mathematical modeling as a stochastic process

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The problem of random oscillations generated by inner defect within the neighborhood of the boundary of the elastic massive body under the pre-failure stage is considered. The investigation is based on results of the invariants’ method in acoustic emission (AE) theory consisting in the stability conditions of the mean of statistic distribution parameters of signal characteristics under the same pre-failure stage. The mathematical model of arising wave process of displacement oscillations in the massive body is constructed and the correctness of its using is studied. The problem in question is reduced to the investigation of a boundary integral equation in special stochastic process classes. The task of reconstructing from AE signals and describing the nature of the random process of defect radiation at the free boundary of the body is set. Some numerical are presented.

全文:

受限制的访问

作者简介

V. Berkovich

Don Cossack State Institute of Food Industry and Business, Rostov branch of Razumovsky; Southern Federal University (SFU), Vorovich Institute of Mathematics, Mechanics and Computer Science; Moscow State University of Technologies and Management (First Cossack University); Rostov Branch of the Russian Customs Academy (RCA)

编辑信件的主要联系方式.
Email: vberkovich@mail.ru
俄罗斯联邦, Semashko str., 55, Rostov-on-Don 344007; Milchakova str., 8A, Rostov-on-Don 344090; Budennovskiy ave., 10, Rostov-on-Don 344007

S. Builo

Southern Federal University (SFU), Vorovich Institute of Mathematics, Mechanics and Computer Science

Email: sibuilo@yandex.ru
俄罗斯联邦, Milchakova str., 8A, Rostov-on-Don 344090

B. Builo

Russian University of Transport (RTU)

Email: builobi@mail.ru
俄罗斯联邦, Obraztsova str., 9, Moscow 127055

参考

  1. Builo S.I. Physico-mechanical, statistical and chemical aspects of acoustic emission diagnostics. Rostov-on-Don: Publishing House of the Southern Federal University, 2017. 184 p.
  2. Ivanov V.I., Barat V.A. Acoustic emission diagnostics. M.: Spektr, 2017. 368 p.
  3. Builo S.I., Builo B.I., Chebakov M.I. Probalistic-Information Approach to Assessing the Reliability of the Results of the Acoustic-Emission Method of Testing and Diagnostics // Defectoscopya. 2021. No. 5. P. 37—44.
  4. Ivanov V.I. Actual problems of acoustic emission diagnostics / All-Russian conference with the international participation of “Actual problems of the acoustic emission method” (APMAE-2021). St. Petersburg. Sven Publishing House, 2021. P. 37—44.
  5. Senkevich Yu.I., Marapulets Yu.V., Lukovenkova O.O., Solodchuk A.A. Methodology for identifying informative features in geoacoustic emission signals // Proceedings of SPIIRAN. 2019. V. 18. No. 5. P. 1066—1092.
  6. Tretyakova T.V., Dushko A.N., Strungar E.M., Zubova E.M., Lobanov D.S. Comprehensive analysis of mechanical behavior and fracture processes of specimens of three-dimensional reinforced carbon fiber in tensile tests // PNRPU Mechanics Bulletin. 2019. № 1. P. 173—183.
  7. Lobanov D. S., Strungar E. M., Zubova E. M., Wildemann V. E. Studying the Development of a Technological Defect in Complex Stressed Construction CFRP Using Digital Image Correlation and Acoustic Emission Methods // Russian Journal of Non-destructive Testing. 2019. V. 55. No. 9. P. 631—638.
  8. Lobanov D.S., Zubova E.M. Research of temperature aging effects on mechanical behaviour and properties of composite material by tensile tests with used system of registration acoustic emission signal // Procedia Structural Integrity. 2019. V. 18. P. 347—352.
  9. Saveliev V.N., Makhmudov H.F. Investigation of the acoustic properties of heterogeneous rocks and concrete lining in field conditions // Journal of Technical Physics. 2020. Is. 1. P. 143—147.
  10. Inshakov D.V., Kuznetsov K.A. Diagnostics of the technical condition of heat exchangers by the method of acoustic pulse reflectometry at hazardous production facilities // Science and Technology. 2019. No. 12. P. 24—29.
  11. Panaev V.A., Lebedev D.V. Connection of the power and acoustic emission criteria for determining the stress concentration in the defect zone. The method of experimental determination of the stress intensity coefficient at the crack tip / All-Russian conference with the international participation of “Actual problems of the acoustic emission method” (APMAE-2021). St. Petersburg: Sven Publishing House, 2021. P. 119.
  12. Khun H.H., Bashkov O.V. Development of a technique for identifying developing damages based on the acoustic emission method / All-Russian conference with the international participation of “Actual problems of the acoustic emission method” (APMAE-2021). Saint-Petersburg: Sven publishing house, 2021. P. 127—128.
  13. Berkovich V.N., Builo S.I., Reconstructing the Amplitude of Radiation of a Defect Based on Acoustic Emission Signals at the Free Boundary of a Massive Body // Defectoscopya. 2019. No. 4. P. 18—23.
  14. Berkovich V.N. Acoustic radiation in an elastic medium from an internal defect with a fracture // International Scientific Research Journal. 2018. No. 3. P. 11—14.
  15. Vatulyan A.O., Solovyov A.N. Direct and inverse problems for homogeneous and inhomogeneous elastic and electroelastic bodies. Rostov-on-Don: Publishing House of the Southern Federal University, 2008. 175 p.
  16. Builo S.I. On the Information Value of the Method of Invariants of Acoustic-Emission Signals in the Diagnostics of Pre-Failure State in Materials // Defectoscopya. 2018. No. 4. P. 18—23.
  17. Getoore R.K., Sharpe M.J. Conformal martingales // Inventiones Mathematicae. 1972. V. 16. P. 271—308.
  18. Berkovich V.N. Nonstationary mixed problem of dynamics of inhomogeneously elastic wedge-shaped medium // Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation. Krasnodar. 2005. No. 3. P. 14—20.
  19. Gihman I.I., Skorokhod A.V. Introduction to the theory of random processes. Moscow: Nauka, 1977. 564 p.
  20. Batemen H., Erdelyi A. Higher Transcendental Functions. V. 2. New York — Toronto — London: McGrow-Hill Dook Company. Inc., 1953. 342 p.
  21. Lebedev N.N. Special functions of their application. M.—L.: Fizmatgiz, 1963. 358 p.
  22. Berkovich V.N., Builo S.I., Reconstructing Defect Radiation Amplitude Based on Acoustic Emission Signals under Conditions of a Plane Stress State // Defectoscopya. 2020. No. 4. P. 40—50.
  23. Gasnikov A.V., Gorbunov E.A., Guz S.A., Chernousova E.O., Shirobokov M.G., Shulgin E.V. Lectures on random processes. Moscow: MIPT, 2019. 285 p.
  24. Ditkin V.A., Prudnikov A.P. Integral transformations and operational calculus. M.: Nauka, 1974. 542 p.
  25. Grebennikov E.A. Averaging method in applied problems. M.: Nauka. The main edition of phys.-mat. lit., 1986. 255 p.
  26. Wiener N. The Fourier Integral and Certain of Its Applications. Cambridge. 1933.
  27. Parton V.Z., Morozov E.M. Mechanics of elastic-plastic destruction. M.: Nauka. The main edition of phys.-mat. lit., 1974. 416 p.

补充文件

附件文件
动作
1. JATS XML
2. Fig.1

下载 (72KB)
3. Fig.2

下载 (201KB)
4. Fig.3

下载 (149KB)
5. Fig.4

下载 (89KB)
6. Fig.5

下载 (155KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##