Analysis and NDT applications of a gas discharge electroacoustic transducer

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this study, a gas discharge electroacoustic transducer (GDEAT) based on a pulsed electric discharge in the air under atmospheric pressure has been investigated. By evaluating acoustic pressure and recording amplitude-frequency characteristics of membranes, the acoustic characteristic of GDEATs have been obtained in the frequency range from 40 Hz to 4 MHz. The electro-thermo-acoustic processes have been studied in gas discharge systems of an open type where the electrode space is in a direct contact with the ambient. Some features of using the above-mentioned GDEATs in nondestructive testing (NDT) of materials have been demonstrated. It has been shown that, on one hand, the wear of both electrodes and insulation limits a work life of a transducer electrode system, but, from the other hand, this may lead to deposition of micro-particles on the surface of an object under test. The wear of electrode systems was evaluated quantitatively, and the results of the chemical analysis of deposited micro-particles have been presented. The use of a GDEATs for non-contact stimulation of local resonant vibrations in subsurface defects and visualizing vibrations by means of laser dopler vibrometry has been shown in the case of NDT of a glass fiber composite.

全文:

受限制的访问

作者简介

D. Derusova

Tomsk Polytechnic University

编辑信件的主要联系方式.
Email: red@tpu.ru
俄罗斯联邦, 634028, Tomsk, st. Savinykh, 7

V. Vavilov

Tomsk Polytechnic University

Email: vavilov@tpu.ru
俄罗斯联邦, 634028, Tomsk, st. Savinykh, 7

V. Nekhoroshev

Institute of High Current Electronics SB RAS

Email: nvo@lnp.hcei.tsc.ru
俄罗斯联邦, 634055, Tomsk, Akademichesky Ave., 2/3

V. Shpil’noy

Tomsk Polytechnic University

Email: vshpilnoy@list.ru
俄罗斯联邦, 634028, Tomsk, st. Savinykh, 7

D. Zuza

Institute of High Current Electronics SB RAS

Email: zzdnl@yandex.ru
俄罗斯联邦, 634055, Tomsk, Akademichesky Ave., 2/3

E. Kolobova

Tomsk Polytechnic University

Email: ekaterina_kolobova@mail.ru
俄罗斯联邦, 634028, Tomsk, st. Savinykh, 7

参考

  1. Кругленя А.И. Неразрушающий контроль в аэрокосмической промышленности / Сборник материалов VII Международной научно-практической конференции, посвященной Дню космонавтики: в 3 томах. Т. 2. Под общей редакцией Ю. Ю. Логинова. Красноярск: Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет науки и технологий имени академика М.Ф. Решетнева», 2021. С. 813—815.
  2. Щербаков М.И. Новые аспекты использования теплового неразрушающего контроля для различных объектов авиационной промышленности / Материалы III отраслевой конференции по измерительной технике и метрологии для исследований летательных аппаратов. Жуковский: Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского, 2018. С. 381—386
  3. Bertovic M., Fahlbruch B., Müller C. Human Factors Perspective on the Reliability of NDT in Nuclear Applications // Materials testing. 2013. № 55 (4). P. 243—253. doi: 10.3139/120.110431
  4. Chatillon S., Cattiaux G., Serre M., Roy O. Ultrasonic non-destructive testing of pieces of complex geometry with a flexible phased array transducer // Ultrasonics. 2000. № 38 (1—8). P. 131—4.
  5. Bida G.V. Nondestructive Testing of Mechanical Properties of Rolled Steel (Review): 1. Tests of Strength and Plastic Properties // Russian Journal of Nondestructive Testing. 2005. № 41(5). С. 296—306. doi: 10.1007/s11181-005-0169-7
  6. Solodov I., Kreutzbruck M. Local defect resonance of a through-thickness crack / // Ultrasonics. 2021. № 118 (21). P. 106565. doi: 10.1016/j.ultras.2021.106565
  7. Malinowski P.H., Wandowski T., Ostachowicz W.M., Sagnard M., Berthe L., Ecault R., Solodov I., Ségur D., Kreutzbruck M. Extended Non-destructive Testing for the Bondline Quality Assessment of Aircraft Composite Structures // Adhesive Bonding of Aircraft Composite Structures. 2021. doi: 10.1007/978-3-319-92810-4_4
  8. Solodov I., Kreutzbruck M. Mode matching to enhance nonlinear response of local defect resonance //Journal of Sound and Vibration. 2019. V. 461. P. 114916.
  9. Vanlanduit S., Vanherzeele J., Vuye C., Guillaume P. Characterization of acoustic materials using the scanning laser Doppler vibrometer / Proc. of the 7th Int. Conf. on Vibr. Measur. by Laser Tech. 2006. V. 6345. P. 634517.
  10. Derusova D.A., Vavilov V.P., Druzhinin N.V. Investigating vibration characteristics of magnetostrictive transducers for air-coupled ultrasonic NDT of composites // NDT and E Int. 2019. V. 107. Article number 102151.
  11. White R.D., Schmid E.S., Neeson I. Flow testing of a sonic anemometer for the martian environment // AIAA Scitech Forum. 2020. No. 1. P. 237189.
  12. Polytec Laser vibration measurement. Areas of application / Polytec // polytec.com URL: https://www.polytec.com/int/vibrometry/areas-of-application (дата обращения: 06.11.2023).
  13. Solodov I., Doring D., Busse G. Air-coupled laser vibrometry: analysis and applications // Appl. Opt. 2009. V. 48. P. 33—37.
  14. Solodov I., Kreutzbruck M. Single-sided access remote imaging via resonant airborne activation of damage // NDT & E Int. 2019. V. 107. P. 102146.
  15. Najib Abou Leyla, Moulin E., Assaad J., Benmeddour F., Grondel S. Modeling a surface-mounted Lamb wave emission-reception system: Applications to structural health monitoring // PACS. 2008. № 43. 40.Le, 43.20.Ks, 43.60.Qv, 43.38.Ar YHB. P. 3521—3527. doi: 10.5772/30139
  16. Vinogradov S.A. , Cobb A. C., Fisher J. New Magnetostrictive Transducer Designs for Emerging Application Areas of NDE // Materials. 2018. № 11(5). С. 755. doi: 10.3390/ma11050755
  17. Хмелев В.Н., Шалунов А.В., Нестеров В.А., Доровских Р.С. Исследование влияния второстепенных мод колебаний на равномерность распределения колебаний ультразвуковых дисковых излучателей // Научно-технический вестник Поволжья. 2017. № 5. С. 106—108.
  18. Гуревич С.Ю., Голубев Е.В., Петров Ю.В. Излучатель и приемник ультразвука для бесконтактного контроля качества тонколистовых металлоизделий // Вестник ЮУрГУю. Серия «Математика. Механика. Физика». 2015. Т. 7. № 1. С. 57—64.
  19. Derusova D.A., Vavilov V. P., Xingwang G., Shpil’noi V.Yu., Danilin N.S. Infrared Thermographic Testing of Hybrid Materials Using High-Power Ultrasonic Stimulation // Russian Journal of Nondestructive Testing. 2018. V. 10. P. 58—64.
  20. Ultrasonic transducers, Technical notes, Olympus NDT, 2006.
  21. Xingwang G., Liang Z. Vibro-thermography of calibrated defects in hybrid plates focusing on viscoelastic heat generation // Quantitative InfraRed Thermography Journal. 2021. V. 18. Is. 5. P. 314—331.
  22. Derusova D.A., Vavilov V.P., Guo X., Druzhinin N.V. Comparing the Efficiency of Ultrasonic Infrared Thermography under High-Power and Resonant Stimulation of Impact Damage in a CFRP Composite // Russian Journal of Nondestructive Testing. 2018. V. 5. P. 356—362.
  23. Yano T., Tone M., Fukumoto A. 1 MHz Ultrasonic Transducer Operating in Air / In: A. J. Berkhout, J. Ridder, and L. F. van der Wal. Eds. Acoustical Imaging. Boston, MA: Springer US, 1985. P. 575—584.
  24. Schiller S., Hsieh C.K., Chou C., Khuri-yakub B. Novel high frequency air transducers / Review of progress in quantitative NDE. 1990. P. 795.
  25. Hutchins D.A., Schindel D.W. Advances in non-contact and air-coupled transducers // Proceedings of IEEE Ultrasonics Symposium. 1993. V. 2. P. 1245—1254. doi: 10.1109/ULTSYM.1994.401811
  26. Chen J., Wang X., Yang X., Zhang L., Wu H. Application of air-coupled ultrasonic nondestructive testing in the measurement of elastic modulus of materials // Applied Sciences. 2021. V. 11. Is. 19. Article number 9240. doi: 10.3390/app11199240
  27. Adelegan O.J., Coutant Z.A., Wu X., Yamaner F.Y., Oralkan O. Design and Fabrication of Wideband Air-Coupled Capacitive Micromachined Ultrasonic Transducers with Varying Width Annular-Ring and Spiral Cell Structures // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2021. V. 68. Is. 8. P. 2749—2759. doi: 10.1109/TUFFC.2021.3076143
  28. Bernhardt Y., Kreutzbruck М. Integrated defect sensor for the inspection of fiber-reinforced plastics using air-coupled ultrasound // Journal of Sensors and Sensor Systems. 2021. V. 9. Is. 1. P. 127—132. doi: 10.5194/jsss-9-127-2020
  29. Marhenke T., Neuenschwander J., Furrer R., Zolliker P., Twiefel J., Hasener J., Wallaschek J., Sanabria S.J. Air-Coupled Ultrasound Time Reversal (ACU-TR) for Subwavelength Nondestructive Imaging // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2020. V. 67. Is. 3. P. 651—663. doi: 10.1109/TUFFC.2019.2951312
  30. Daschewski M., Kreutzbruck M., Prager J., Dohse E., Gaal M., Harrer A. Resonanzfreie Messung und Anregung von Ultraschall // Technisches Messen. 2015. V. 82 (3). P. 156—66.
  31. Gaal M., Kotschate D. New technologies for air-coupled ultrasonic transducers / Proceedings of 12th ECNDT conference, 2018, Gothenburg, Sweden. Author profiles for this publication at: https://www.researchgate.net/publication/325685745
  32. Migachev S.A., Kurkin M.I., Smorofinskii Y.G. Noncontact excitation of sound in metals by a video pulse of electric field // Russian Journal of Nondestructive Testing. 2016. V. 52. Is. 11. P. 653—6561.
  33. Kachanov V.K., Sokolov I.V., Karavaev M.A., Kontsov R.V. Selecting Optimum Parameters of Ultrasonic Noncontact Shadow Method for Testing Products Made of Polymer Composite Materials // Russian Journal of Nondestructive Testing. 2020. V. 56. Is. 10. P. 831—842
  34. Shpil’noi V.Yu., Vavilov V.P., Derusova D.A., Druzhinin N.V., Yamanovskaya A.Yu. Specific Features of Nondestructive Testing of Polymer and Composite Materials Using Air-Coupled Ultrasonic Excitation and Laser Vibrometry // Russian Journal of Nondestructive Testing. 2021. V. 57. No. 8. P. 647—655.
  35. Derusova D.A., Vavilov V.P., Nekhoroshev V.O., Shpil’noi V.Yu., Druzhinin N.V. Features of Laser-Vibrometric Nondestructive Testing of Polymer Composite Materials Using Air-Coupled Ultrasonic Transducers // Russian Journal of Nondestructive Testing. 2021. V. 57. P. 1060—1071.
  36. Solodov I., Dillenz A., Kreutzbruck M. A new mode of acoustic NDT via resonant air-coupled emission // J. of Appl. Phys. 2017. V. 121. P. 245101.
  37. Vuye C., Vanlanduit C., Guillaume P. Accurate estimation of normal incidence absorption coefficients with confidence intervals using a scanning laser Doppler vibrometer // Opt. and Las. in Eng. 2009. V. 47. Is. 6. P. 644—650.
  38. Derusova D.A., Nekhoroshev V.O., Shpil’noi V.Y., Vavilov V.P. Developing Novel Gas Discharge Emitters of Acoustic Waves in Air for Nondestructive Testing of Materials // Sensors. 2022. V. 22. Is. 23. Article number 99056. 14 p.
  39. Zipser L., Seeling H.-D., Franke H. Refracto-vibrometry for visualizing ultrasound in small-sized channels, cavities and objects / Proc. - IEEE Ultras. Symp. IUS 2009. P. 2588—2590.
  40. Solodov I., Rahammer M., Kreutzbruck M. Analytical evaluation of resonance frequencies for planar defects: Effect of a defect shape // NDT and E Internationalthis link is disabled. 2019. V. 102. P. 274—280.
  41. Ayrault C., Bequin P., Baudin S. Characteristics of spark discharge as an adjuistable acoustic source for scale model measurements / Proceedings of the acoustics 2012 Nantes conf. 23—27 April. P. 3555—3559. Nantes, France. 2012.
  42. Rittmann J., Rahammer M., Holtmann N., Kreutzbruck M. A mobile nondestructive testing (NDT) system for fast detection of impact damage in fiber-reinforced plastics (FRP) // Journal of Sensors and Sensor Systems. 2020. V. 9. Is. 1. P. 43—50.
  43. Suh G., Kim H., Yôiti S. Measurement of resonance frequency and loss factor of a microphone diaphragm using a laser vibrometer // Appl. Acoust. 2010. V. 71. P. 258—261. doi: 10.1016/j.apacoust.2009.09.007
  44. Zipser L., Franke H. Laser-scanning vibrometry for ultrasonic transducer development // Sens. Actuators A Phys. 2004. V. 110. P. 264—268. doi: 10.1016/j.sna.2003.10.051

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Simplified scheme of GDEAT: 1 - point electrode; 2 - insulator; 3 - return electrode (current conductor); 4 - membrane (disk electrode); 5 - schematic position of the discharge channel

下载 (357KB)
3. Fig. 2. Simplified scheme of the laboratory installation for the study of GDEAT: a - system for excitation of acoustic oscillations on the basis of GDEAT; b - sound pressure level meter; c - sample for the study of sputtering; d - scanning head of the laser vibrometer (l - distance to the end of the transducer)

下载 (328KB)
4. Fig. 3. Simplified scheme of the laboratory setup for NC using scanning laser Doppler vibrometry and non-contact method of stimulation of GDEAT-based materials

下载 (277KB)
5. Fig. 4. Vibration spectrum on the surface of the GDEAT membrane (1 mm diameter hole in the center) in the frequency range from 100 kHz to 4 MHz

下载 (343KB)
6. Fig. 5. Noise level at a distance of 30 cm from GDEAT: N - pulse sequence number; pulse repetition rate - 2 Hz; interelectrode gap 5 mm

下载 (738KB)
7. Fig. 6. Photographs of the disk electrode before testing (a) and pictures of microcraters formed on its surface (b)

下载 (991KB)
8. Fig. 7. Insulator (a) and electrode (b) mass loss as a function of the number of discharge pulses (dotted lines indicate linear approximations for estimating the mass loss rate, interelectrode gap -10 mm)

下载 (366KB)
9. Fig. 8. Photograph of GDEAT during the experiment (a), sputtering on the slide (b) and sections of the slide surface at different magnifications (c - scraping trace; d - detailed view of sputtering)

下载 (1MB)
10. Fig. 9. Overview XRD spectrum of sputtering

下载 (146KB)
11. Fig. 10. Vibrograms of fiberglass composite at frequencies of 7.33 kHz (a); 10.3 kHz (b); 12.8 kHz (c); 35.9 kHz (d)

下载 (1MB)
12. Fig. 11. Vibrogram of fiberglass composite vibrations averaged in the frequency range from 50 Hz to 50 kHz (GDEAT equipped with a damper)

下载 (572KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##