Distribution network cable detection based on terahertz pulse and imaging

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Moisture of high voltage distribution network cables will cause major safety hazard, but there is no effective means to detect and analyze the internal humidity state of the cables. Therefore, it is urgent to develop a new non-destructive detection method to evaluate the waterproof performance of distribution network cables and their connectors. The internal structure of the cable is a multi-layer structure composed of wires, cross-linked polyethylene insulation layer, and silicone rubber insulation sheath. We used the reflective terahertz pulse signal to detect the internal states of the cable, and judge whether it contains water stains according to the echo characteristics. In addition, three-dimensional data was obtained through cylindrical coordinate scanning and terahertz images were reconstructed based on feature information, which were consistent with the distribution of water stains between the cable insulation sheath and cross-linked polyethylene insulation layer. The results show that the terahertz technology can realize the high sensitivity detection of cable moisture state, which is of great significance in the power and transmission industry.

全文:

受限制的访问

作者简介

Guowei Li

State Grid Hebei Electric Power Research Institute

编辑信件的主要联系方式.
Email: lgwexe@163.com
台湾, Shijiazhuang 050021, Hebei

Siming Zeng

State Grid Hebei Electric Power Research Institute

Email: lgwexe@163.com
台湾, Shijiazhuang 050021, Hebei

Qing Wang

State Grid Hebei Electric Power Research Institute

Email: lgwexe@163.com
台湾, Shijiazhuang 050021, Hebei

Zhenwei Zhang

State Grid Hebei Electric Power Research Institute

Email: lgwexe@163.com
台湾, Shijiazhuang 050021, Hebei

参考

  1. Du B., Li Z., Yang Z. et al. Application and Research Progress of HVDC XLPE Cables // High Volt Eng. 2017. V. 43 (2). P. 14—24.
  2. Salah Khalil M. International research and development trends and problems of HVDC cables with polymeric insulation // IEEE Electr. Insul. Mag. 1997. V. 13 (6). P. 35—47.
  3. Densley R.J. An investigation into the growth of electrical trees in XLPE cable insulation // IEEE Trans. Elect. Insul. 1979. EI-14 (3). P. 148—58.
  4. Dissado L.A. Predicting electrical breakdown in polymeric insulators from deterministic mechanisms to failure statistics // IEEE Trans Dielect Electr. Insul., 2002. V. 9(5). P. 860—875.
  5. Chen G., Tham C. Electrical treeing characteristics in XLPE power cable insulation in frequency range between 20 and 500 Hz // IEEE Trans. Dielect. Electr. Insul. 2009. V. 16 (1). P. 179—88.
  6. Du B.X., Ma Z.L., Gao Y. et al. Effect of ambient temperature on electrical treeing characteristics in silicone rubber // IEEE Trans. Dielect. Electr. Insul. 2011. V. 18 (2). P. 401—7.
  7. Laurent C., Mayoux C. Analysis of the propagation of electrical treeing using optical and electrical methods // IEEE Trans. Elect Insul. 1980. EI-15 (1). P. 33—42.
  8. Watanabe E., Moriya T., Yoshizawa M. Ultrasonic visualization method of electrical trees formed in organic insulating materials // IEEE Trans. Dielect. Electr. Insul. 1998. V. 5 (5). P. 767—73.
  9. Ueno H., Walter P., Cornelissen C., Schnettler A. Resolution evaluation of ultrasonic diagnosis tools for electrical insulation devices and the detection of electrical Trees // IEEE Trans. Dielect. Electr. Insul. 2007. V. 14 (1). P. 249—56.
  10. Thomas G., Flores-Tapia D., Pistorius S. et al. Synthetic aperture ultrasound imaging of XLPE insulation of underground power cables // IEEE Electr. Insul. Mag. 2010. V. 26 (3). P. 24—34.
  11. Reid A.J., Zhou C., Hepburn D.M. et al. Withers P. Fault location and diagnosis in a medium voltage EPR power cable // IEEE Trans. Dielect. Electr. Insul. 2013. V. 20 (1). P. 10—8.
  12. Schurch R., Rowland S., Bradley R. et al. Imaging and analysis techniques for electrical trees using x-ray computed tomography // IEEE Trans. Dielect. Electr. Insul. 2013. V. 21 (1). P. 53—64.
  13. Sato R., Komatsu M., Ohki Y. et al. Observation of water trees using terahertz dpectroscopy and yime fomain imaging // IEEE Trans. Dielect. Electr. Insul. 2011. V. 18 (5). P. 1570—1577.
  14. Komatsu M., Sato R., Mizuno M. et al. Feasibility study on terahertz imaging of corrosion on a cable metal shield // Jpn. J. Appl. Phys. 2012. V. 51 (12). P. 122405.
  15. Takahashi S., Hamano T., Nakajima K. et al. Observation of damage in insulated copper cables by THz imaging // NDT E. Int. 2014. V. 61. P. 75—79.
  16. Yan Z., Shi W., Hou L. et al. Investigation of aging effects in cross-linked polyethylene insulated cable using terahertz waves // Mat. Res. Express. 2017. V. 4 (1). P. 015304.
  17. Lee I.S., Lee J.W. Nondestructive internal defect detection using a CW-THz imaging system in XLPE for power cable insulation // Appl. Sci. 2020. V. 10 (6). P. 2055.
  18. Xie S., Yang F., Huang X. et al. Air gap detection and analysis of XLPE cable insulation based on terahertz time domain spectroscopy // Trans. China Electrotech. Soc. 2020. V. 35 (12). P. 10.
  19. Li S., Cao B., Kang Y. et al. Nonintrusive inspection of moisture damp in composited insulation structure based on terahertz technology // IEEE Trans. Instrum. Meas. 2021. V. 70. P. 1—10.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic representation of the model of the passage of a terahertz wave through the air—medium—metal system.

下载 (209KB)
3. Fig. 2. Cable samples: cable image (a); cross section (1 — conductive core; 2 — insulation layer of crosslinked polyethylene; 3 — protective layer) (b).

下载 (774KB)
4. Fig. 3. Installation diagram for terahertz spectroscopy.

下载 (893KB)
5. Fig. 4. Measurement of the cross-linked polyethylene insulation layer: measurement (a); cross-section (b); reflected terahertz pulse (c).

下载 (544KB)
6. Fig. 5. Measurement of the protective layer: measurement (a); cross section (b); reflected terahertz pulse (c).

下载 (505KB)
7. Fig. 6. Comparison of terahertz signals with/without immersion in water in a metal—rod sample model.

下载 (322KB)
8. Fig. 7. Measurement of the insulating layer and the protective layer: a sample wrapped in prepared wet paper and tin foil (a); the measured area (b).

下载 (705KB)
9. Figure 8. Comparison of the characteristics of terahertz pulses with and without immersion in water of a sample cable connector.

下载 (427KB)
10. Fig. 9. Terahertz image when immersed in an aqueous and anhydrous medium: terahertz image of the measured area (a); echo at z = 28 mm (b); echo at the interface at points A and B (c); terahertz image of the area wrapped in a shell (d).

下载 (1MB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##