Развитие и перспективы прикладных разработок для технологии контроля дефектов в составных элементах деревянных конструкций

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Деревянные строения свидетельствуют об изысканном мастерстве китайских ремесленников. Из-за природных и человеческих факторов повреждения и разрушения древних деревянных конструкций приводят к потере культурного наследия Китая. Поэтому особенно важно изучить существующие методы выявления дефектов деревянных частей и разработать оптимальные методы реставрации для сохранения деревянных конструкций. Было установлено, что дефекты деревянных конструкций в основном включают в себя растрескивание, гниение, поражение насекомыми, изгиб и вытягивание шпунтов и т.д. Эти дефекты являются основными причинами, влияющими на механические свойства деревянных элементов и угрожающими надежности деревянных конструкций. Для обнаружения этих дефектов были использованы такие методы, как пенетрометр, резистограф, волна напряжения, радар, ультразвук, рентген, инфракрасная спектроскопия и пьезоэлектрические преобразователи, которые относятся к методам полуразрушающего и неразрушающего контроля. Подробно рассмотрены принцип, степень развития и примеры применения технологий обнаружения деревянных зданий, чтобы продемонстрировать преимущества и недостатки этих технологий в различных ситуациях. Необходимо разработать новую и эффективную технологию обнаружения, а также определить направление развития технологии выявления повреждений деревянных конструкций в будущем.

Об авторах

Кай Чжао

Школа информатики и электротехники, Университет Шаньдун Цзяньчжу

Автор, ответственный за переписку.
Email: zhao_sdjz@163.com
Тайвань, Цзинань

Чжедун Гэ

Школа информатики и электротехники, Университет Шаньдун Цзяньчжу

Email: gezhedong@sdjzu.edu.cn
Тайвань, Цзинань

Лянлян Хуо

Восьмое инженерное подразделение Китайской Строительной Компании

Email: 1123310614@hit.edu.cn
Тайвань, Шанхай

Ишэн Гао

Школа архитектуры и городского планирования, Шаньдун Цзяньчжу

Email: gao_sdjz@126.com
Россия, Цзинань

Юйчэн Чжоу

Школа информатики и электротехники, Университет Шаньдун Цзяньчжу

Email: zhouyucheng_2016@163.com
Тайвань, Цзинань

Чжихао Яо

Школа информатики и электротехники, Университет Шаньдун Цзяньчжу

Email: 13573410920@163.com
Россия, Цзинань

Список литературы

  1. Weimin Guo, Xianjun Fan, Ruijing Wu, Tao Shi, Yongchao Ma, Mengzhou Yu, Yue Hu. Neolithic large-scale wooden structure F63 at the Jijiaocheng site in Lixian county, Hunan // Archaeology. 2023, V. 5. P. 41—61.
  2. Tampone Gennaro. Acquaintance of the ancient timber structures // Historical constructions. 2001. P. 117—144.
  3. Xin Yi, Shen Yu. Reflections on anti-corrosion design of timberwork building from the memorial arch collapse accident // Journal of Tianjin Chengjian University. 2013. V. 19. No. 02. P. 87—91.
  4. Peixuan Wang, Shengcai Li, Macchioni Nicola, Palanti Sabrina, Milani Gabriele. Comprehensive evaluation method of historical timber structural building taking Fujiu Zhou House as an example // Forests. 2021. V. 12. No. 9. P. 1—21.
  5. Xingxia Ma, Yunfei Qiao, Dongqing Li, Yanhua Wang. Biological hazard prevention and protection system for wood components in ancient buildings // Chinese Journal of Wood Science and Technology. 2023. V. 37. No. 01. P. 83—90.
  6. Qian Zhou, Weiming Yan, Jinbao Ji. Typical aseismic construction problems in ancient Chinese wooden buildings of the Ming and Qing Dynasties // Sciences of Conservation and Archaeology. 2011. V. 23. No. 02. P. 36—48. https://doi.org/10.16334/j.cnki.cn31-1652/k.2011.02.001
  7. Hansen Christian Pilegaard. Application of the Pilodyn in forest tree improvement. Humblebaek: Danida Forest Seed Centre 11, 2002.
  8. Thaler Nejc, Lesar Boštjan, Humar Miha. Correlation between brown rot decay and Pilodyn measurements // European Journal of Wood and Wood Products. 2012. V. 70. No. 6. P. 893—895. https://doi.org/10.1007/s00107-012-0617-8
  9. Dajun Shang, Xinfang Duan, Zhongping Yang, Pingping Wang, Guanwu Zhou. Research on some decayed and insect-attacked ancient wood members in part of Xizang by PILODYN nondestructive evaluation method // Forestry Science & Technology. 2007. V. 5. P. 53—55.
  10. Rongfeng Huang, Yanmei Wu, Hua Li, Xiuying Liu. Quantitative analysis of decaying detected by Pilodyn in wood of ancient architecture // Scientia Silvae Sinicae. 2010. V. 46. No. 10. P. 114—118.
  11. Tannert Thomas, Anthony Ronald W., Kasal Bohumil, Kloiber Michal, Piazza Maurizio, Riggio Mariapaola, Rinn Frank, Widmann Obert, Yamaguchi Obuyoshi. In situ assessment of structural timber using semi-destructive techniques // Materials and Structures. 2014. V. 47. P. 767—785. https://doi.org/10.1617/s11527-013-0094-5
  12. Anagnostopoulou Vasiliki, Pournou Anastasia. Correlating visual grading with NTD methods for assessing timber condition in historic buildings // Advanced Materials Research. 2013. V. 778. P. 273—280. https://doi.org/10.4028/www.scientific.net/AMR.778.273
  13. Rongfeng Huang, Xiaohuan Wang, Hua Li, Xiuying Liu. Quantitative analysis on the detected results by resistograph on inside wood decay of ancient architecture // Journal of Beijing Forestry University. 2007. V. 6. P. 167—171.
  14. Houjiang Zhang, Lei1 Zhu, Yanliang Sun, Xiping Wang, Haicheng Yan. Determining modulus of elasticity of ancient structural timber // Advanced Materials Research. 2011. V. 217. P. 407—412. https://doi.org/10.4028/www.scientific.net/AMR.217-218.407
  15. Li Xin, Qianb Wei, Chang Lihong. Analysis of the density of wooden components in ancient buildings by micro-drilling resistance, using information diffusion // BioResources. 2019. V. 14. No. 3. P. 5777—5787. https://doi.org/10.15376/biores.14.3.5777-5787
  16. Jerzy Jasieńko, Tomasz Nowak, Łukasz Bednarz. Wrocław university’s Leopoldinum Auditorium–tests of its ceiling and a conservation and strengthening concept // Advanced Materials Research. 2010. V. 133. P. 265—270. https://doi.org/10.4028/www.scientific.net/AMR.133-134.265
  17. Xiping Wang, Teder Marko, Wacker James. Condition assessment of the timber structures of a century-old industrial building using a nondestructive inspection procedure // Advanced Materials Research. 2013. V. 778. P. 840—848.
  18. Cabaleiro1 Manuel, Branco Jorge M., Sousa Hélder S., Conde Borja. First results on the combination of laser scanner and drilling resistance tests for the assessment of the geometrical condition of irregular cross-sections of timber beams // Materials and Structures. 2018. V. 51. P. 1—15. https://doi.org/10.1617/s11527-018-1225-9
  19. Cuartero Jaime, Cabaleiro Manuel, Sousa Hélder S., Branco Jorge M. Tridimensional parametric model for prediction of structural safety of existing timber roofs using laser scanner and drilling resistance tests // Engineering Structures. 2019. V. 185. P. 58—67. https://doi.org/10.1016/j.engstruct.2019.01.096
  20. Kolsky H. Stress waves in solids // Courier Corporation. 1963. V. 1. P. 88—110.
  21. Wensu Lin, Jinhuo Wu. Study on application of stress wave for nondestructive test of wood defects // Applied Mechanics and Materials. 2013. V. 401. P. 1119—1123. https://doi.org/10.4028/www.scientific.net/AMM.401-403.1119
  22. Lihai Wang, Huadong Xu, Cilin Zhou, Li Li, Xuechun Yang. Effect of sensor quantity on measurement accuracy of log inner defects by using stress wave // Journal of Forestry Research. 2007. V. 18. No. 3. P. 221—225. https://doi.org/10.1007/s11676-007-0045-5
  23. Shanqing Liang, Fu Feng. Effect of sensor number and distribution on accuracy rate of wood defect detection with stress wave tomography // Wood Research. 2014. V. 59. No. 4. P. 521—532.
  24. Hailin Feng, Yiming Fang, Jian Li, Guanghui Li. Using stress wave based technology for wood material nondestructive testing // Advanced Materials Research. 2011. V. 143. P. 265—270. https://doi.org/10.4028/www.scientific.net/AMR.143-144.265
  25. Zhan Huan, Zhi Jiao, Guanghui Li, Xi Wu. Velocity error correction based tomographic imaging for stress wave nondestructive evaluation of wood // BioResources. 2018. V. 13. No. 2. P. 2530—2545. https://doi.org/10.15376/biores.13.2.2530-2545
  26. Xiaochen Du, Shaozhe Li, Guanghui Li, Hailin Feng, Shenyong Chen. Stress wave tomography of wood internal defects using ellipse-based spatial interpolation and velocity compensation // BioResources. 2015. V. 10. No. 3. P. 3948—3962.
  27. Xiaochen Du, Jiajie Li, Hailin Feng, Shengyong Chen. Image reconstruction of internal defects in wood based on segmented propagation rays of stress waves // Applied Sciences. 2018. V. 8. No. 10. P. 1—18. https://doi.org/10.3390/app8101778
  28. Xiaochen Du, Hailin Feng, Mingyue Hu, Shengyong Chen. Three-dimensional stress wave imaging of wood internal defects using TKriging method // Computers and Electronics in Agriculture. 2018. V. 148. P. 63—71. https://doi.org/10.1016/j.compag.2018.03.005
  29. Junjie Zhang, Khoshelham Kourosh. 3D reconstruction of internal wood decay using photogrammetry and sonic tomography // The Photogrammetric Record. 2020. V. 35. No. 171. P. 357—374. https://doi.org/10.1111/phor.12328
  30. Osterloh Kurt R. S., Bücherl Thomas, Hasenstab Andreas, Rädel Christoph, Zscherpel Uwe, Meinel Dietmar, Weidemann Gerd, Goebbels Jürgen, Ewert Uwe. Fast neutron radiography and tomography of wood as compared to photon based technologies / Proceedings of DIR 2007—International Symposium on Digital Industrial Radiology and Computed Tomography, 2007. Lyon, France.
  31. Funt Brian V., Bryant Edwin C. Detection of internal log defects by automatic interpretation of computer tomography images // Forest Products Journal. 1987. V. 37. No. 1. P. 56—62.
  32. Skog Johan, Oja Johan. Density measurements in pinus sylvestris sawlogs combining X-ray and three-dimensional scanning // Scandinavian Journal of Forest Research. 2010. V. 25. P. 470—481. https://doi.org/10.1080/02827581.2010.509326
  33. Lechner Thomas, Sandin Ylva, Kliger Robert. Assessment of density in timber using X-ray equipment // International Journal of Architectural Heritage. 2013. V. 7. P. 416—433. https://doi.org/10.1080/15583058.2011.642055
  34. Fujita Kaori, Shin Eunmi, Ibaraki Akito, Sanuki Masashi. Earthquake response monitoring and structural analysis of traditional Japanese timber temple // Advanced Materials Research. 2013. V. 778. P. 823—828. https://doi.org/10.4028/www.scientific.net/AMR.778.823
  35. Yisheng Gao, Zhedong Ge, Jiaqi Fang, Xiaoxia Yang, Yucheng Zhou. Effect of carpenter bee nests on timber building components Based on computed tomography (CT) // BioResources. 2022. V. 17. No. 2. P. 3320—3331. https://doi.org/10.15376/biores.17.2.3320-3331
  36. Björngrim Niclas, Myronycheva Olena, Fjellströmb Per-Anders. The use of large-scale X-ray computed tomography for the evaluation of damaged structural elements from an old timber bridge // Wood Material Science & Engineering. 2022. V. 17. No. 6. P. 1028—1029. https://doi.org/10.1080/17480272.2022.2137697
  37. Keying Long, Kaiqiang Chen, Lanying Lin, Feng Fu, Yong Zhong. Deterioration of microstructures and properties in ancient architectural wood from Yingxian wooden pagoda (1056 AD) during natural aging // Forests. 2023. V. 14. P. 1—12. https://doi.org/10.3390/f14020393
  38. Sklarczyk Christoph, Porsch Felix, Wolter Bernd, Boller Christian, Kurz Jochen H. Nondestructive characterization of and defect detection in timber and wood // Advanced materials research. 2013. V. 778. P. 295—302. https://doi.org/10.4028/www.scientific.net/AMR.778.295
  39. Harry M.J. Chapter 1—Electromagnetic principles of ground penetrating radar. Ground penetrating radar: Theory and applications / 1st edn. Amsterdam: Elsevier Science, 2009. P. 1—40.
  40. Kasal Bohumil, Tannert Thomas. In situ assessment of structural timber // Springer Science & Business Media. 2011. P. 7. https://doi.org/10.1007/978-94-007-0560-9
  41. Devaru Dayakar, Halabe Udaya B., Gopalakrishnan B., Agrawal Sachin, Grushecky Shawn. Algorithm for detecting defects in wooden logs using ground penetrating radar // Intelligent Systems in Design and Manufacturing. 2005. V. 5999. P. 110—121. https://doi.org/10.1117/12.630835
  42. Fujii Yoshihisa, Fujiwara Yuko, Yanase Yoshiyuki, Mori Takuro, Yoshimura Tsuyoshi, Nakajima Masao, Tsusumi Hiroki, Mori Mitsunori, Kurisaki Hiroshi. Development of radar apparatus for scanning of wooden-wall to evaluate inner structure and bio-degradation non-destructively // Advanced Materials Research. 2013. V. 778. P. 289—294. https://doi.org/10.4028/www.scientific.net/AMR.778.289
  43. Butnor J.R., Pruyn M.L., Shaw D.C., Harmon M.E., Mucciardi A.N., Ryan M.G. Detecting defects in conifers with ground penetrating radar: applications and challenges // Forest pathology. 2009. V. 39. P. 309—322. https://doi.org/10.1111/j.1439-0329.2009.00590.x
  44. Rodríguez Abad I., Martínez-Sala R., Capuz Lladró R., Díez Barra R., García-García F. Assessment of the variation of the moisture content in the pinus pinaster ait using the non destructive GPR technique // Materiales de Construcción. 2011. V. 61. No. 301. P. 143—156. https://doi.org/10.3989/mc.2010.49608
  45. Lualdi Maurizio, Zanzi Luigi, Binda Luigia. Acquisition and processing requirements for high quality 3D reconstructions from GPR investigations / Proceedings, International Symposium Non-Destructive Testing in Civil Engineering (NDT-CE), 2003, Berlin, Germany.
  46. Núñez-Nieto X., Solla M., Novo A., Lorenzo H. Three-dimensional ground-penetrating radar methodologies for the characterization and volumetric reconstruction of underground tunneling // Construction and Building materials. 2014. V. 71. P. 551—560. https://doi.org/10.1016/j.conbuildmat.2014.08.083
  47. Muller W. Timber girder inspection using ground penetrating radar // Insight-Non-Destructive Testing and Condition Monitoring. 2003. V. 45. No. 12. P. 809—812.
  48. Pérez Gracia V., Santos-Assunçao S., Caselles O., Clapés J., Canas J.A. Study of wood beams in buildings with ground penetrating radar / Proceedings of the 15th International Conference on Ground Penetrating Radar, 2014.
  49. Pérez Gracia V., Caselles O., Clapés J., Santos-Assunçao S. GPR building inspection: Examples of building structures assessed with ground penetrating radar / Proceedings of 9th international workshop on advanced ground penetrating radar (IWAGPR). IEEE, 2017.
  50. Beall F.C. Overview of the use of ultrasonic technologies in research on wood properties // Wood Science and Technology. 2002. V. 36. P. 197—212. https://doi.org/10.1007/s00226-002-0138-4
  51. Marcantonio Vera, Monarca Danilo, Colantoni Andrea, Cecchini Massimo. Ultrasonic waves for materials evaluation in fatigue, thermal and corrosion damage: A review // Mechanical Systems and Signal Processing. 2019. V. 120. P. 32—42. https://doi.org/10.1016/j.ymssp.2018.10.012
  52. Lourenço Paulo B., Feio Artur O., Machado José S. Chestnut wood in compression perpendicular to the grain: Non-destructive correlations for test results in new and old wood // Construction and Building Materials. 2007. V. 21. No. 8. P. 1617—1627. https://doi.org/10.1016/j.conbuildmat.2006.07.011
  53. Xuechun Yang. Testing theories and experiments of log inner decay based on stress-wave technology. PhD dissertation, Northeast Forestry University, 2004.
  54. Bucur Voichita, Böhnke Isabelle. Factors affecting ultrasonic measurements in solid wood // Ultrasonics. 1994. V. 32. No. 5. P. 385—390.
  55. Brancheriau L., Ghodrati A., Gallet P., Thaunay P., Lasaygues P. Application of ultrasonic tomography to characterize the mechanical state of standing trees (Picea abies) // Journal of Physics: Conference Series. 2012. V. 353. P. 1—13. https://doi.org/10.1088/1742-6596/353/1/012007
  56. Mantilla Carrasco Edgar Vladimiro, Rocha Teixeira Amanda. Methodology for inspection of wood pathologie using ultrasonic pulses // Cerne. 2012. V. 18. P. 479—486.
  57. Tallavo Fernando, Cascante Giovanni, Pandey Mahesh D. A novel methodology for condition assessment of wood poles using ultrasonic testing // NDT&E International. 2012. V. 52. P. 149—156. https://doi.org/10.1016/j.ndteint.2012.08.002
  58. Yang Zhang, Kaveng Yuen, Mousavi Mohsen, Gandomi Amir H. Timber damage identification using dynamic broad network and ultrasonic signals // Engineering Structures. 2022. V. 263. P. 1—11. https://doi.org/10.1016/j.engstruct.2022.114418
  59. Mousavi Mohsen, Taskhiri Mohammad Sadegh, Holloway Damien, Olivier J.C., Turner Paul. Feature extraction of wood-hole defects using empirical mode decomposition of ultrasonic signals // NDT and E International. 2020. V. 114. P. 1—10. https://doi.org/10.1016/j.ndteint.2020.102282
  60. Hasníková Hana, Kuklík Petr. Various non-destructive methods for investigation of timber members from a historical structure // Wood research. 2014. V. 59. No. 3. P. 411—420.
  61. Reinprecht Ladislav, Šupina Pavol. Comparative evaluation of inspection techniques for impregnated wood utility poles: Ultrasonic, drill-resistive, and CT-scanning assessments // European Journal of Wood and Wood Products. 2015. V. 73. P. 741—751. https://doi.org/10.1007/s00107-015-0943-8
  62. Morales Conde M.J., Rodríguez Liñán C., de Hita P. Rubio. Use of ultrasound as a nondestructive evaluation technique for sustainable interventions on wooden structures // Building and environment. 2014. V. 82. P. 247—257. https://doi.org/10.1016/j.buildenv.2014.07.022
  63. Verbist Maxime, Matos Filipe T., Branco Jorge M. Structural and health assessment of historic timber roofs from the Convent of Christ in Tomar // Journal of Civil Structural Health Monitoring. 2019. V. 9. P. 491—511. https://doi.org/10.1007/s13349-019-00347-6
  64. Nowak Tomasz, Karolak Anna, Sobótka Maciej, Wyjadłowski Marek. Assessment of the condition of Wharf timber sheet wall material by means of selected non-destructive methods // Materials. 2019. V. 12. P. 1532—1554. https://doi.org/10.3390/ma12091532
  65. Jelle Bjørn Petter, Hovde Per Jostein. Fourier transform infrared radiation spectroscopy applied for wood rot decay and mould fungi growth detection // Advances in Materials Science and Engineering. 2012. V. 19. P. 1—6. https://doi.org/10.1155/2012/969360
  66. Schwanninger Manfred, Rodrigues José Carlos, Fackler Karin. A review of band assignments in near infrared spectra of wood and wood components // Journal of Near Infrared Spectroscopy. 2011. V. 19. P. 287—308.
  67. Sandak Anna, Ferrari Silvia, Sandak Jakub, Allegretti Ottaviano, Terziev Nasko, Riggio Mariapaola. Monitoring of wood decay by near infrared spectroscopy // Advanced Materials Research. 2013. V. 778. P. 802—809. https://doi.org/10.4028/www.scientific.net/AMR.778.802
  68. Sandak Anna, Riggio Mariapaola, Sandak Jakub. Non destructive characterization of wooden members using near infrared spectroscopy // Advanced Materials Research. 2013. V. 778. P. 328—334. https://doi.org/10.4028/www.scientific.net/AMR.778.328
  69. Sandak Anna, Sandak Jakub, Riggio Mariapaola. Assessment of wood structural members degradation by means of infrared spectroscopy: an overview // Structural Control and Health Monitoring. 2016. V. 23. P. 396—408. https://doi.org/10.1002/stc.1777
  70. Dogu Dilek, Yilgor Nural, Mantanis George, Tuncer Fatma Digdem. Structural evaluation of a timber construction element originating from the great metéoron monastery in Greece // BioResources. 2017. V. 12. No. 2. P. 2433—2451.
  71. Jicheng Zhang, Yongshui Huang, Yu Zheng. A feasibility study on timber damage detection using piezoceramic-transducer-enabled active sensing // Sensors. 2018. V. 18. No. 5. P. 1—11.
  72. Fang Han, Jinwei Jiang, Kai Xu, Ning Wang. Damage detection of common timber connections using piezoceramic transducers and active sensing // Sensors. 2019. V. 19. P. 1—12. https://doi.org/10.3390/s19112486
  73. Haibei Xiong, Lin Chen, Cheng Yuan, Qingzhao Kong. A novel piezoceramic-based sensing technology combined with visual domain networks for timber damage quantification // Frontiers in Materials. 2021. V. 8. P. 1—12. https://doi.org/10.3389/fmats.2021.688594

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах