Features of application of adaptive interferometric fiber sensors of acoustic emission to monitor the condition of polymer composite materials

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of an experimental study of the operation of fiber optic sensors (FOS) of acoustic emission introduced into the structure of polymer composite materials (PCM) are presented. The reliability and fault tolerance of FOS under critical mechanical loads on PCM was assessed, and the influence of the presence of FOS embedded into the structure of PCM on the mechanical characteristics of the material was investigated. For demodulation of FOS output signals, the principles of adaptive holographic interferometry based on two-wave mixing at dynamic hologram formed in a photorefractive crystal are used.

Texto integral

Acesso é fechado

Sobre autores

R. Romashko

Institute of Automation and Control Processes FEB RAS

Autor responsável pela correspondência
Email: romashko@iacp.dvo.ru
Rússia, 690041, Vladivostok, Radio street, 5

O. Bashkov

Institute of Automation and Control Processes FEB RAS; Komsomolsk-na-Amure State University

Email: bashkov@knastu.ru
Rússia, 690041, Vladivostok, Radio street, 5; 681013, Komsomolsk-na-Amure, Prospekt Lenina, 27

T. Efimov

Institute of Automation and Control Processes FEB RAS

Email: efimov@iacp.dvo.ru
Rússia, 690041, Vladivostok, Radio street, 5

M. Bezruk

Institute of Automation and Control Processes FEB RAS

Email: bezmisha@iacp.dvo.ru
Rússia, 690041, Vladivostok, Radio street, 5

D. Bobruyko

Institute of Automation and Control Processes FEB RAS

Email: bobruyko@iacp.dvo.ru
Rússia, 690041, Vladivostok, Radio street, 5

N. Makarova

Institute of Automation and Control Processes FEB RAS

Email: makarova@iacp.dvo.ru
Rússia, 690041, Vladivostok, Radio street, 5

Bibliografia

  1. Kolobkov A.S. Polymer composite materials for various aircraft structures (review) // Proceedings of VIAM. 2020. Issue 6—7 (89). P. 38—44. https://doi.org/10.18577/2307-6046-2020-0-67-38-44.
  2. Gutkin R., Green C.J., Vangrattanachai S., Pinho S.T., Robinson P., Curtis P.T. On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses // Mechanical Systems and Signal Processing. 2011. V. 25 (4). P. 1393—1407. https://doi.org/10.1016/j.ymssp.2010.11.014.
  3. Sause M.G.R., Müller T., Horoschenkoff A., Horn S. Quantification of failure mechanisms in mode-I loading of fiber reinforced plastics utilizing acoustic emission analysis // Composites Science and Technology. 2012. V. 72 (2). P. 167—174. https://doi.org/10.1016/j.compscitech.2011.10.013.
  4. Surgeon M., Wevers M. Modal analysis of acoustic emission signals from CFRP laminates // NDT & E International. 1999. V. 32 (6). P. 311—322. https://doi.org/10.1016/S0963-8695(98)00077-2.
  5. Sause M.G.R., Schmitt S., Kalafat S. Failure load prediction for fiber-reinforced composites based on acoustic emission // Composites Science and Technology. 2018. V. 164. P. 24—33. https://doi.org/10.1016/j.compscitech.2018.04.033.
  6. Sharapov V.M., Musienko M.P., Sharapova E.V. Piezoelectric sensors. Moscow: TECHNOSPHERA, 2006. 628 p. (Mir elektroniki). ISBN 5-94836-100-4. (in Russian)
  7. Seryoznov A.N., Muravyov V.V., Stepanova L.N., Pankova A.F., Taldykin S.V., Kozhemyakin V.L., Popov S.I. Multiplexed multichannel acoustic-emission system // Russian Journal of Nondestructive Testing. 1996. Is. 8. P. 71—76.
  8. Bashkov O.V., Romashko R.V., Khon H., Bezruk M.N., Zaikov V.I., Bashkov I.O. Registration of acoustic emission waves in anisotropic composite plates by fiber-optic sensors // Proc. SPIE. 2019. V. 11024. P. 143—147. https://doi.org/10.1117/12.2518272.
  9. Sorgente M., Zadeh A.R., Saidoun A. Performance comparison between fiber-optic and piezoelectric acoustic emission sensors // Optics11 white paper. 2020.
  10. Chen Rongsheng, Bradshaw Tim, Badcock Rod, Cole Phil, Jarman Paul, Pedder Don, Fernando Gerard. Linear location of acoustic emission using a pair of novel fibre optic sensors // J. Phys.: Conf. Ser. 2005. V. 15. P. 232—236. http://dx.doi.org/10.1088/1742-6596/15/1/039.
  11. Bado M.F., Casas J.R. A Review of recent distributed optical fiber sensors applications for civil engineering structural health monitoring // Sensors. 2021. V. 21. Art. No. 1818. https://doi.org/10.3390/s21051818
  12. Verstrynge E., Lacidogna G., Accornero F., Tomor A. A review on acoustic emission monitoring for damage detection in masonry structures // Construction and Building Materials. 2021. V. 268. P. 121089. https://doi.org/10.1016/j.conbuildmat.2020.121089
  13. Bashkov O.V., Romashko R.V., Zaikov V.I., Panin S.V., Bezruk M.N., Khun K., Bashkov I.O. Detecting acoustic-emission signals with fiber-optic interference transducers // Russian Journal of Nondestructive Testing. 2017. V. 53. P. 415—421. https://doi.org/10.1134/S1061830917060031.
  14. Kosheleva N.A., Serovaev G.S. The influence of embedded optical fiber on the internal structure of polymer composite material // Perm Federal Research Centre Journal. 2021. Is. 1. P. 54—63. https://doi.org/10.7242/2658-705X/2021.1.5
  15. Huang Minghua, Zhou Zhi, Huang Ying, Ou Jinping. A distributed self-sensing FRP anchor rod with built-in optical fiber sensor // Measurement. 2013. V.46. P. 1363—1370. http://dx.doi.org/10.1016/j.measurement.2012.12.012
  16. Kamshilin A.A., Romashko R.V., Kulchin Y.N. Adaptive interferometry with photorefractive crystals // J. Appl. Phys. 2009. V. 105. P. 031101. https://doi.org/10.1063/1.3049475
  17. Di Girolamo S., Kamshilin A.A., Romashko R.V., Kulchin Y.N., Launay J.C. Sensing of multimode-fiber strain by a dynamic photorefractive hologram // Optics Letters. 2007. V. 32. P. 1821—1823. https://doi.org/10.1364/OL.32.001821

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Optical scheme of the AE registration system based on a fiber-optic sensor and an adaptive holographic interferometer

Baixar (438KB)
3. Fig. 2. Dynamics of signal changes in the sensing element of the AE integrated into the PCM sample during its loading in the three-point bending scheme

Baixar (662KB)
4. Fig. 3. A sample of a PCM with WATER embedded in its structure during a three-point bending test.

Baixar (1MB)
5. Fig. 4. Diagram of the values of the tensile strength of PCM samples with different numbers of embedded fiber fibers during bending testing

Baixar (209KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies