ULTRASONIC TESTING OF SURFACE DEFECTS IN MOLYBDENUM—NIOBIUM MONOCRYSTALS

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The article considers the ultrasonic method of non-destructive testing of samples, which are single crystals of molybdenum-niobium alloy, manufactured by the method of crucibleless electron-beam zone melting. The propagation of transverse elastic vibrations in an anisotropic single crystal is simulated. Based on the simulation results, the optimal testing parameters are selected. Experimental studies are carried out on samples with artificial surface defects in the form of scratches of different depths

Авторлар туралы

Nikita Shchipakov

Bauman Moscow State Technical University; Welding and Testing of BMSTU

Хат алмасуға жауапты Автор.
Email: shchipak@yandex.ru
Ресей, 105005 Moscow, 2nd Baumanskaya str., 5, building 1 105005 Moscow, 2nd Baumanskaya str., 5, building 1

Maxim Degtyarev

Welding and Testing of BMSTU

Email: maxim-degtyarev@mail.ru
Ресей, 105005 Moscow, 2nd Baumanskaya str., 5, building 1

Aleksandr Vorykhanov

Bauman Moscow State Technical University

Email: voryhanov00@yandex.ru
Ресей, 105005 Moscow, 2nd Baumanskaya str., 5

Denis Kochetov

SC Research Institute of Scientific Production Association LUCH

Email: kochetovdi@sialuch.ru
Ресей, 142103 Podolsk, Zheleznodorozhnaya str., 24

Sergey Zvonkov

SC Research Institute of Scientific Production Association LUCH

Email: zvonkovsa@sialuch.ru
Ресей, 142103 Podolsk, Zheleznodorozhnaya str., 24

Әдебиет тізімі

  1. Smirnov V.P. Thermonuclear Energy is the Largest International Innovation Project. Russian Chemical Journal (Rossiiskii Khimicheskii Zhurnal). 2008. No. 6. P. 79–94.
  2. Jiao B., Han W., Zhang W., Hu Z., Li J. Preparation, Deformation Behavior and Irradiation Damage of Refractory Metal Single Crystals for Nuclear Applications: A Review // Materials. 2024. V. 17. P. 3417. https://doi.org/10.3390/ma17143417.
  3. Yan A., Atif A.M., Wang X., Lan T., Wang Z. The Microstructure and Cracking Behaviors of Pure Molybdenum Fabricated by Selective Laser Melting // Materials. 2022. V. 15. P. 6230. https://doi.org/10.3390/ma15186230
  4. Raj B., Mudali U.K. Materials Science and Technology: Research and Challenges in Nuclear Fission Power // Proc. Indian Natl. Sci. Acad. 2015. V. 81. P. 801—826.
  5. Was G.S., Petti D., Ukai S., Zinkle S. Materials for Future Nuclear Energy Systems // J. Nucl. Mater. 2019. V. 527. P. 151837.
  6. Shen X., Lu X., Guo J., Liu Y., Qi J., Lv Z. Nondestructive Testing of Metal Cracks: Contemporary Methods and Emerging Challenges // Crystals. 2024. V. 14. P. 54. https://doi.org/10.3390/cryst14010054.
  7. ISO 9934-1:2016. Non-destructive Testing. Magnetic Particle Testing. Part 1: General Principles. Geneva, Switzerland: International Organization for Standardization, 2016.
  8. ISO 3452-1:2008. Non-destructive testing. Penetrant testing. Part 1: General principles (IDT). Geneva, Switzerland: International Organization for Standardization, 2008.
  9. Pejryd L., Karlsson P., Hällgren S., and Kahlin M. Non-destructive evaluation of internal defects in additive manufactured aluminium / In European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings, 2016. The European Powder Metallurgy Association. P. 1—7.
  10. Honarvar F., Varvani-Farahani A. A review of ultrasonic testing applications in additive manufacturing: Defect evaluation, material characterization, and process control // Ultrasonics. 2020. V. 108. doi: 10.1016/j.ultras.2020.106227
  11. Thompson A., Maskery I., Leach R. X-ray computed tomography for additive manufacturing: a review // Measurement Science and Technology. 2016. V. 27 (7). P. 072001. doi: 10.1088/0957-0233/27/7/072001
  12. Hubbell W. C., Brotzen F. R. Elastic constants of niobiummolybdenum alloys in the temperature range –190 to +100 °C // Journal of Applied Physics. 1972. V. 43. P. 3306. doi: 10.1063/1.1661712
  13. Lane C. J. L., Dunhill A. K., Drinkwater B. W., Wilcox P. D. The inspection of anisotropic single-crystal components using a 2-D ultrasonic array // IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 2010. V. 57 (12). P. 2742—2752. doi: 10.1109/tuffc.2010.1748
  14. http://luch-istok.ru/produktsiya/monokristally-tugoplavkih-metallov/ Дата посещения: 15.12.24.
  15. Rinkevich A.B., Stepanova N.N., Rodionov D.P., Perov, D.V. Ultrasonic Testing of Mono- and Polycrystalline Products from Nickel-Based Superalloys // Defectoskopiya. 2009. No. 11. P. 3—21.
  16. Xu L., Zhang Z., Tao C., Xu N. Wave velocity measurement in the through-thickness direction of the anisotropic material plate with ultrasonic polar scan // Materials & Design. 2023. V. 232. https://doi.org/10.1016/j.matdes.2023.112144.
  17. Malashin I., Tynchenko V., Martysyuk D., Shchipakov N., Krysko N., Degtyarev M., Nelyub V., Gantimurov A., Borodulin A., Galinovsky A. Assessment of Anisotropic Acoustic Properties in Additively Manufactured Materials: Experimental, Computational, and Deep Learning Approaches // Sensors. 2024. V. 24. P. 4488. https://doi.org/10.3390/s24144488.
  18. Jobling J., Saunders E., Barden T., Lowe M., Lan B. A feasibility study on phase characterisation of nickel-based superalloys using ultrasound // NDT & E International. 2024. V. 145 (1). P. 103120. doi: 10.1016/j.ndteint.2024.103120
  19. Aizpurua-Maestre I., De Miguel A., Lanzagorta J.L., Carcreff E., Galdos L. Single-Crystal Inspection Using an Adapted Total Focusing Method // Sensors. 2025. May 17. V. 25 (10). P. 3157. doi: 10.3390/s25103157

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2026

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).