Investigating electromagnetic acoustic emission signals denoising for alloy materials non-destructive detecting: a CRQA method

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Aiming at the problem that signals collected from local electromagnetic loading operations are usually mixed with background noises (especially white noise), this paper proposed an electromagnetic acoustic emission signal denoising technology based on cross recurrence quantification analysis (CRQA). Firstly, the decomposition layer and penalty factor of variational mode decomposition (VMD) are set by experience or optimization algorithm, and then the original signal is decomposed. Secondly, the main components are selected by the CRQA algorithm, and the electromagnetic acoustic emission signal after denoising is obtained by superposition reconstruction. The simulation and experimental results show that when 5dB noise is added, CRQA can effectively remove the background noises in electromagnetic acoustic emission signals compared to the correlation coefficient algorithm, and it can assist in realizing the high-precision non-destructive testing of alloy materials.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Qiuyue Li

Chongqing Vocational Institute of Safety Technology, Department of Network and Information Security; Chongqing Three Gorges University, School of Mechanical Engineering

Email: Laiys@Sanxiau.edu.cn
ҚХР, Chongqing; Chongqing

Yushu Lai

Chongqing Three Gorges University, School of Mechanical Engineering

Хат алмасуға жауапты Автор.
Email: Laiys@Sanxiau.edu.cn
ҚХР, Chongqing

Difei Cao

University of Science and Technology Beijing, School of Computer & Communication Engineering

Email: Laiys@Sanxiau.edu.cn
ҚХР, Beijing

Әдебиет тізімі

  1. Liu L., Chen L., Wang Z., Liu D. Early fault detection of planetary gearbox based on acoustic emission and improved variational mode decomposition // IEEE Sens. J. 2020. V. 21. No. 2. P. 1735—1745.
  2. Su Y., Dong L., Pei Z. Non-destructive testing for cavity damages in automated machines based on acoustic emission tomography // Sensors. 2022. V. 22. No. 6. P. 2201.
  3. Ghorbani H., Farhangi H., Malekan M. Material characterization of long-term service-exposed GTD-111 nickel-based superalloy // Eng. Fail. Anal. 2023. V. 148. P. 107061.
  4. Rockenhäuser C., Rowolt C., Milkereit B., Darvishi Kamachali R., Kessler O., Skrotzki B. On the long-term aging of S-phase in aluminum alloy 2618A // J. Mater. Sci. 2021. V. 56. No. 14. P. 8704—8716.
  5. Gwoździk M., Motylenko M., Rafaja D. Microstructure changes responsible for the degradation of the 10CrMo9-10 and 13CrMo4-5 steels during long-term operation // Mater. Res. Express. 2019. V. 7. No. 1. P. 016515.
  6. Skalskyi V., Pochaps’kyi Y., Stankevych O., Klym B., Melnyk N. Application of the magnetoacoustic emission method for estimation of pipelines material state / In Degradation Assessment and Failure Prevention of Pipeline Systems. 2021. Springer. P. 217—229.
  7. Chen X.Y., Wu X.Y., Liu F.F., Zeng B.H., Tu Y.M., Cao L.L. Acoustic emission signal-based non-destructive testing of carbon content of Pr-Nd alloys // Insight-Non-Destructive Testing and Condition Monitoring. 2022. V. 64. No. 9. P. 503—510.
  8. Fricke L. V., Thürer S.E., Kahra C. et al. Non-destructive evaluation of workpiece properties along the hybrid bearing bushing process chain // J. Mater. Eng. Perform. 2023. V. 32. No. 15. P. 7004—7015.
  9. Zheltonozhskaya M.V., Iyusyuk D.A., Chernyaev A.P., Kovacs T. Non-destructive method for determining the 63Ni activity in reactor steels and alloys // J. Radioanal. Nucl. Chem. 2023. P. 1—8.
  10. Chang Y., Zhang X., Song S., Song Q., Shen Y. Rail crack defect recognition based on a multi-feature fusion algorithm using electromagnetic acoustic emission technique // Meas. Sci. Technol. 2023. V. 34. No. 11. P. 115002.
  11. Sikorski W. Active dielectric window: A new concept of combined acoustic emission and electromagnetic partial discharge detector for power transformers // Energies. 2019. V. 12. No. 1. Art. No. 1.
  12. Lin Q., Lyu F., Yu S., Xiao H., Li X. Optimized denoising method for weak acoustic emission signal in partial discharge detection // IEEE Trans. Dielectr. Electr. Insul. 2022. V. 29. No. 4. P. 1409—1416.
  13. Guo J., Xie R., Wang Y., Xiao L., Fu J., Jin G., Luo S. Variational mode decomposition for NMR echo data denoising // IEEE Trans. Geosci. Remote Sens. 2023. V. 61. P. 1—14.
  14. Li Z., Cai D., Wang J. et al. Machine learning based dynamic correlation on marine environmental data using cross-recurrence strategy // IEEE Access. 2019. V. 7. P. 185121—185130.
  15. Zhou Y., Peng M., Zuo X., Xu J. Correlation between friction coefficient and friction vibration in running-in process based on cross recurrence plots // J. Tribol. 2021. V. 144. No. 1.
  16. Wei K., Zhang J., He Y., Yao G., Zhang Y. Faulty feeder detection method based on VMD–FFT and Pearson correlation coefficient of non-power frequency component in resonant grounded systems // Energies. 2020. V. 13. No. 18. P. 4724.
  17. Hu H., Zhang L., Yan H., Bai Y., Wang P. Denoising and baseline drift removal method of MEMS hydrophone signal based on VMD and wavelet threshold processing // IEEE Access. 2019. V. 7. P. 59913—59922.
  18. Yan H., Xu T., Wang P., Zhang L., Hu H., Bai Y. MEMS hydrophone signal denoising and baseline drift removal algorithm based on parameter-optimized variational mode decomposition and correlation coefficient // Sensors. 2019. V. 19. No. 21. P. 4622.
  19. Dhandapani R., Mitiche I., McMeekin S., Mallela V.S., Morison G. Enhanced partial discharge signal denoising using dispersion entropy optimized variational mode decomposition // Entropy. 2021. V. 23. No. 12. P. 1567.
  20. Li Y., Xiao L., Tang B., Liang L., Lou Y., Guo X., Xue X. A denoising method for ship-radiated noise based on optimized variational mode decomposition with snake optimization and dual-threshold criteria of correlation coefficient // Math. Probl. Eng. 2022. V. 2022.
  21. Jiang Z., Xie J., Zhang J., Zhang X. Denoising method of pipeline leakage signal based on VMD and Hilbert transform // J. Sens. 2023. V. 2023.
  22. Jiang Z., Guo G., Liu B. Application research of negative pressure wave signal denoising method based on VMD // Appl. Sci. 2023. V. 13. No. 7. P. 4156.
  23. Dragomiretskiy K., Zosso D. Variational mode decomposition // IEEE Trans. Signal Process. 2013. V. 62. No. 3. P. 531—544.
  24. Ur Rehman N., Aftab H. Multivariate variational mode decomposition // IEEE Trans. Signal Process. 2019. V. 67. No. 23. P. 6039—6052.
  25. Li Y., Tang B., Jiang X., Yi Y. Bearing fault feature extraction method based on GA-VMD and center frequency // Math. Probl. Eng. 2022. V. 2022. P. e2058258.
  26. Li Q., Lai Y., Yang C., Cao D. Investigating electromagnetic acoustic emission signal processing based on optimized variational mode decomposition / In 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), 2022. IEEE. P. 1863—1868.
  27. Yao G., Wang Y., Benbouzid M., Ait-Ahmed M. A hybrid gearbox fault diagnosis method based on GWO-VMD and DE-KELM // Appl. Sci. 2021. V. 11. No. 11. Art. no. 11.
  28. Ghosh S., Mitra A., Chakrabarti S., Sharma A. Data-driven strategy for appliance identification using phase-space reconstruction // IEEE Trans. Smart Grid. 2023.
  29. Ma J., Yang M., Lin Y. Ultra-short-term probabilistic wind turbine power forecast based on empirical dynamic modeling // IEEE Trans. Sustain. Energy. 2019. V. 11. No. 2. P. 906—915.
  30. Amiri A., Samet H., Ghanbari T. Recurrence plots-based method for detecting series Arc faults in photovoltaic systems // IEEE Trans. Ind. Electron. 2022. V. 69. No. 6. P. 6308—6315.
  31. Li Y., Cai D., Wang J., Sun X., Li Z., Zhang H., Wang N. Recurrence behavior statistics of blast furnace gas sensor data in industrial Internet of Things // IEEE Internet Things J. 2020. V. 7. No. 6. P. 5666—5676.
  32. Yang Z., Yan W., Jin L., Li F., Hou Z. A novel feature representation method based on original waveforms for acoustic emission signals // Mech. Syst. Signal Pr. 2020. V. 135. P. 106365.
  33. Zhang D., Ding W., Zhang B., Liu C., Han J., Doermann D. Learning modulation filter networks for weak signal detection in noise // Pattern Recogn. 2021. V. 109. P. 107590.
  34. Kostin V.N., Filatenkov D.Y., Chekasina Y.A., Vasilenko O.N., Serbin E.D. Features of excitation and detection of magnetoacoustic emission in ferromagnetic objects // Acoust. Phys. 2017. V. 63. P. 237—244.
  35. Kostin V.N., Vasilenko O.N., Filatenkov D.Y., Chekasina Y.A., Serbin E.D. Magnetic and magnetoacoustic testing parameters of the stressed–strained state of carbon steels that were subjected to a cold plastic deformation and annealing // Russ. J. Nondestruct. Test. 2015. V. 51. No. 10. P. 624—632.
  36. Piotrowski L., Chmielewski M., Kowalewski Z. On the application of magnetoelastic properties measurements for plastic level determination in martensitic steels // J. Electr. Eng. 2018. V. 69. No. 6. P. 502—506.
  37. Rudnytskyj A., Simon P., Jech M., Gachot C. Constitutive modelling of the 6061 aluminium alloy under hot rolling conditions and large strain ranges // Mater. Des. 2020. V. 190. P. 108568.
  38. Cai C., Alves M.M., Song R., Wang Y., Li J., Montemor M.F. Non-destructive corrosion study on a magnesium alloy with mechanical properties tailored for biodegradable cardiovascular stent applications // J. Mater. Sci. Technol. 2021. V. 66. P. 128—138.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Time and frequency domains of the modeled signal with noise

Жүктеу (451KB)
3. Fig. 2. Schematic diagram of the EMAE experiment

Жүктеу (323KB)
4. Fig. 3. Experimental platform

Жүктеу (953KB)
5. Fig. 4. Sample used in the experiment

Жүктеу (496KB)
6. Fig. 5. Amplitude of the signal obtained on the 6061 aluminum alloy sample in time and frequency domains

Жүктеу (349KB)
7. Fig. 6. Signal amplitude obtained on the 6061 aluminum alloy sample in time and frequency domains with Gaussian white noise

Жүктеу (375KB)
8. Fig. 7. Amplitude of the signal obtained on the 6061 aluminum alloy specimen in time and frequency domains after GAVD-CRQA treatment

Жүктеу (287KB)
9. Fig. 8. Signal amplitude obtained on AZ31B magnesium alloy sample in time and frequency domains with Gaussian white noise

Жүктеу (377KB)
10. Fig. 9. Amplitude of the signal obtained on the AZ31B magnesium alloy specimen in time and frequency domains after treatment by GAVD-CRQA method

Жүктеу (286KB)

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>