Development of approaches to real-time optical diagnostics for laser weld formation process using laser emission spectroscopy

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Welding of metals is subject to various random processes that degrade the quality of the weld, ranging from the presence of inhomogeneities in the metal to spontaneously occurring pulsating processes. Pre-weld destructive testing cannot eliminate the presence of inhomogeneities and is ineffective for spontaneous deviations in the welding process. Therefore, the development of new approaches for real-time diagnosis of the laser welding process is particularly relevant today, especially with the widespread implementation of fiber lasers. The objective of this study was to develop approaches for optical diagnostics of the process of forming heterogeneous material based on laser emission spectroscopy. An experimental setup was created to develop approaches for optical diagnostics of the process of forming heterogeneous material, which is a critical task for additive technologies and laser welding. It was demonstrated that for industrially relevant aluminum alloys 1420, 1580, AMG (Russia), it is possible to record the spectra of the gas-plasma plume that occurs when laser radiation interacts with the metal surface. These spectra depend on the radiation exposure conditions and reflect the processes of atom and molecule evaporation from the molten pool. Further research will allow establishing the nature of this connection and developing optimal modes for technological processes, enabling real-time control of these processes.

Авторлар туралы

N. Maslov

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Email: nmaslov@itam.nsc.ru
Novosibirsk, Russia

S. Konstantinov

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Novosibirsk, Russia

A. Malikov

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Novosibirsk, Russia

Әдебиет тізімі

  1. Guo Q., Qu M., Chuang C.A., Xiong L., Nabaa A., Young Z.A., Ren Y., Kenesei P., Zhang F., Chen L. Phase transformation dynamics guided alloy development for additive manufacturing // Addit. Manuf. 2022. V. 59. Part A. P. 103068.
  2. Lednev V.N., Yakovlev A.V., Labutin T.A., Popov A.M., Zorov N. B. Selection of an analytical line for determining lithium in aluminum alloys by laser induced breakdown spectrometry //j. Anal. Chem. 2007. V. 62. No. 12. P. 1151-1155.
  3. Rai A.K., Yueh F.-Y., Singh J.P. Laser-induced breakdown spectroscopy of molten aluminum alloy // Appl. Opt. 2003. V. 42. No. 12. P. 2078-2084.
  4. Lednev V.N., Sdvizhenskii P.A., Stavertiy A.Ya., Grishin M.Ya., Tretyakov R.S., Asyutin R.D., Pershin S.M. Online and in situ laser-induced breakdown spectroscopy for laser welding monitoring // Spectrochim. Acta Part B: At. Spectrosc. 2021. V. 175. P. 106032.
  5. Lednev V.N., Tretyakov R.S., Sdvizhenskii P.A., Grishin M.Ya., Asyutin R.D., Pershin S.M. Laser induced breakdown spectroscopy for in-situ multielemental analysis during additive manufacturing process //j. Phys. Conf. Ser. 2018. V. 1109. No. 1. P. 012050.
  6. Sabbaghzadeh J., Dadras S., Torkamany M.J.Comparison of pulsed Nd: YAG laser welding qualitative features with plasma plume thermal characteristics //j. Phys. D. Appl. Phys. 2007. V. 40. No. 4. P. 1047-1051.
  7. Simonds B.J., Tran B., Williams P.A. In situ monitoring of Cu/Al laser welding using laser induced fluorescence // Procedia CIRP. 2020. V. 94. P. 605-609.
  8. Cai C., He S., Chen H., Zhang W. The influences of Ar-He shielding gas mixture on welding characteristics of fiber laser-MIG hybrid welding of aluminum alloy // Optics & Laser Technology. 2019. V. 113. P. 37-45.
  9. You D.Y., Gao X.D., Katayama S. Review of laser welding monitoring // Sci. Technol. Weld. Join. 2014. V. 19. No. 3. P. 181-201.
  10. Collur M.M., Debroy T. Emission spectroscopy of plasma during laser welding of AISI 201 stainless steel // Metall. Mater. Trans. B. 1989. V. 20. No. 2. P. 277-286.
  11. Szymanski Z., Kurzyna J., Kalita W. The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium //j. Phys. D. Appl. Phys. 1997. V. 30. No. 22. P. 3153-3162.
  12. Dai J., Wang X., Yang L., Huang J., Zhang Y., Chen J. Study of plasma in laser welding of magnesium alloy // Int. J. Adv. Manuf. Technol. 2014. V. 73. No. 14. P. 443-447.
  13. Sibillano T., Rizzi D., Ancona A., Saludes-Rodil S., Rodríguez Nieto J., Chmelíčková H., Šebestová H. Spectroscopic monitoring of penetration depth in CO 2 Nd:YAG and fiber laser welding processes //j. Mater. Process. Technol. 2012. V. 212. No. 4. P. 910-916.
  14. Lober R., Mazumder J. Spectroscopic diagnostics of plasma during laser processing of aluminium //j. Phys. D. Appl. Phys. 2007. V. 40. No. 19. P. 5917-5923.
  15. Sibillano T., Ancona A., Berardi V., Schingaro E., Basile G., Lugarà P.M. A study of the shielding gas influence on the laser beam welding of AA5083 aluminium alloys by in-process spectroscopic investigation // Opt. Lasers Eng. 2006. V. 44. No. 10. P. 1039-1051.
  16. Sibillano T., Ancona A., Berardi V., Schingaro E., Parente P., Lugarà P.M. Correlation spectroscopy as a tool for detecting losses of ligand elements in laser welding of aluminium alloys // Opt. Lasers Eng. 2006. V. 44. No. 12. P. 1324 - 1335.
  17. Song L., Wang C., Mazumder J. Identification of phase transformation using optical emission spectroscopy for direct metal deposition process // High Power Laser Mater. Process. Lasers, Beam Deliv. Diagnostics, Appl. 2012. V. 8239. P. 82390G.
  18. Palanco S., Klassen M., Skupin J., Hansen K., Schubert E., Sepold G., Laserna J.J. Spectroscopic diagnostics on CW-laser welding plasmas of aluminum alloys // Spectrochim. Acta Part B: At. Spectrosc. 2001. V. 56. No. 6. P. 651-659.
  19. Gao M., Chen C., Hu M., Guo L., Wang Z., Zeng X. Characteristics of plasma plume in fiber laser welding of aluminum alloy // Appl. Surf. Sci. 2015. V. 326. P. 181-186.
  20. Zhou L., Zhang M., Jin X., Zhang H., Mao C. Study on the burning loss of magnesium in fiber laser welding of an Al-Mg alloy by optical emission spectroscopy // Int. J. Adv. Manuf. Technol. 2017. V. 88. P. 1373-1381.
  21. Zhang Z., Huang Y., Qin R., Ren W., Wen G. XGBoost-based on-line prediction of seam tensile strength for Al-Li alloy in laser welding: Experiment study and modelling //j. Manuf. Process. 2021. V. 64. P. 30-44.
  22. Parigger C.G., Hornkohl J.O.Computation of AlO B2Σ+ X2Σ + emission spectra // Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2011. V. 81. No. 1. P. 404-411.
  23. Labazan I., Milošević S. Laser vaporized Li2, Na2, K2 and LiNa molecules observed by cavity ring-down spectroscopy // Phys. Rev. A - At. Mol. Opt. Phys. 2003. V. 68. P. 032901.
  24. Blanc J., Broyer M., Chevaleyre J., Dugourd P., Kühling H., Labastie P., Ulbricht M., Wolf J.P., Wöste L. High resolution spectroscopy of small metal clusters // Zeitschrift für Phys. D Atoms, Mol. Clust. 1991. V. 19. No. 4. P. 7-12.
  25. Scheps R., Ottinger Ch., York G., Gallagher A. Continuum spectra and potentials of Li-noble gas molecules //j. Chem. Phys. 1975. V. 63. No. 6. P. 2581-2590.

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>