MAGNETIC PROPERTIES OF LOW-CARBON STEEL PLATE UNDER ELASTIC BENDING

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Experimental field dependences of the measuring coil signal, proportional to the reversible magnetic permeability, were obtained on an elastically deformed (by bending) plate made of low-carbon steel 20 during its remagnetization along the major hysteresis loop by a U-shaped attached electromagnet (AEM). Additionally, during magnetization, a local area of the plate was subjected to a variable magnetic field using a flat coil placed between the poles of the AEM. The measuring coil, located on the same frame as the bias coil, was in contact with the plate surface. Magnetic property measurements were taken from both sides of the plate in its central part. It was established that the curves measured with the AEM installed on the top and bottom of the deformed plate differ significantly. On the curves measured from the top side of the plate, where the surface experiences maximum compressive stresses, one central peak in the region of the coercive force and two additional inflections (peaks) on both sides of it are observed. On the curves measured from the tension side of the plate, additional inflections were observed only at low frequencies of the bias field, when the signal from the measuring coil also contained information about the compressed layers of the plate. The fields at which the inflections occur depend both on the applied load (magnitude of stresses) and on the frequency of the bias field generated by the primary transducer coil. The dependence of the average field of the peaks on the load applied to the plate is close to linear

About the authors

Alexey Nikolaevich Stashkov

M.N. Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: stashkov@imp.uran.ru
Russian Federation, 620108 Ekaterinburg, Sofya Kovalevskaya, 18

Anton Mikhailovich Matosyan

M.N. Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Email: matosian01@gmail.com
Russian Federation, 620108 Ekaterinburg, Sofya Kovalevskaya, 18

Aleksandr Petrovich Nichipuruk

M.N. Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Email: nichip@imp.uran.ru
Russian Federation, 620108 Ekaterinburg, Sofya Kovalevskaya, 18

Nikita Vitalievich Gorgeev

M.N. Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Email: gordeevn.v@yandex.ru
Russian Federation, 620108 Ekaterinburg, Sofya Kovalevskaya, 18

References

  1. Hellier C. Handbook of non-destructive evaluation. New York: McGraw-Hill, 2003. 594 p.
  2. Doig P., Flewitt P. E. J. Non-destructive stress measurement using X-ray diffraction methods // NDT International. 1978. V. 11. No. 3. P. 127—131.
  3. Murayam R., Misumi K. Development of a non-contact stress measurement system during tensile testing using the electromagnetic acoustic transducer for a Lamb wave // NDT & E International. 2006. V. 39. No. 4. P. 299—303.
  4. Crecraft D. I. The measurement of applied and residual stresses in metals using ultrasonic waves // Journal of Sound and Vibration. 1967. V. 5. No. 1. P. 173—192.
  5. Haugwitz C., Schardt A., Hahn-Jose T., Dörsam J.H., Wismath S., Soennecken S., Holzmann H., Atzrodt H., Lange J., Steckel J., Kupnik M. Non-contact ultrasonic stress measurement using lamb waves // NDT & E International. 2025. V. 155. P. 103419
  6. Fagan P., Ducharne B., Daniel L., Skarlatos A., Domenjoud M., Reboud C. Effect of stress on the magnetic Barkhausen noise energy cycles: A route for stress evaluation in ferromagnetic materials // Materials Science and Engineering: B. 2022. V. 278. P. 115650.
  7. Su F. Methodology for the stress measurement of ferromagnetic materials by using magneto acoustic emission // Experimental Mechanics. 2014. V. 54. No. 8. P. 1431—1439.
  8. Gauthier J., Krause T.W., Atherton D.L. Measurement of residual stress in steel using the magnetic Barkhausen noise technique // NDT & E International. 1998. V. 31. No. 1. P. 23—31.
  9. Stewart D.M., Stevens K.J., Kaiser A.B. Magnetic Barkhausen noise analysis of stress in steel // Current Applied Physics. 2004.V. 4. No. 2—4. P. 308—311.
  10. Krause T.W., Clapham L., Atherton D.L. Characterization of the magnetic easy axis in pipeline steel using magnetic Barkhausen noise // Journal of applied physics. 1994. V. 75. No. 12. P. 7983—7988.
  11. Ducharne B., Gupta B., Hebrard Y., Coudert J.B. Phenomenological model of Barkhausen noise under mechanical and magnetic excitations // IEEE Transactions on Magnetics. 2018. V. 54. No. 11. P. 1—6.
  12. Vengrinovich V., Vintov D., Prudnikov A., Podugolnikov P., Ryabtsev V. Magnetic Barkhausen effect in steel under biaxial strain/stress: influence on stress measurement // Journal of Nondestructive Evaluation. 2019. V. 38. No. 2. P. 52.
  13. Wu J., Liu C., Li E., Zhu J., Ding S., Wang Y. Motion-induced magnetic Barkhausen noise for evaluating applied stress in pipelines // Journal of Nondestructive Evaluation. 2020. V. 39. No. 4. P. 83.
  14. Deng D.G., Wu X.J. Feasibility study of determining axial stress in ferromagnetic bars using reciprocal amplitude of initial differential susceptibility obtained from static magnetization by permanent magnets // Journal of Magnetism and Magnetic Materials. 2018. V. 449. P. 243—256.
  15. Chen Z.J., Jiles D.C., Kameda J. Estimation of fatigue exposure from magnetic coercivity // Journal of Applied Physics. 1994. V. 75. No. 10. P. 6975—6977.
  16. Daniel L. An analytical model for the effect of multiaxial stress on the magnetic susceptibility of ferromagnetic materials // IEEE Transactions on Magnetics. 2013. V. 49. No. 5. P. 2037—2040.
  17. Altpeter I., Dobmann G., Kröning M., Rabung M., Szielasko S. Micro-magnetic evaluation of micro residual stresses of the IInd and IIIrd order // NDT & E International. 2009. V. 42. No. 4. P. 283—290.
  18. Stefanita C.G., Atherton D.L., Clapham L. Plastic versus elastic deformation effects on magnetic Barkhausen noise in steel // Acta materialia. 2000. V. 48. No. 13. P. 3545—3551.
  19. Gorkunov E.S., Mushnikov A.N. Magnitnye metody otsenki uprugikh napryazheniy v ferromagnitnykh stalyakh (obzor) // Kontrol’. Diagnostika. 2020. V. 23. No. 12. P. 270.
  20. Kulak S.M., Novikov V.F. Kontrol’ mekhanicheskikh napryazheniy stal’nykh konstruktsiy i sooruzheniy, ispytayushchikh mnogosnye deformatsii // Kontrol’. Diagnostika. 2016. No. 5. P. 55—60.
  21. Bozorth R.M. Ferromagnetism. Wiley-IEEE Press, 1993. 992 p.
  22. Vonsovskiy S.V., Shur Ya. S. Ferromagnetizm. Moskva: OGIZ, 1948. 816 p.
  23. Brown W.F. Influence of field and stress on magnetization changes // Phys. Rev. 1949. V. 75. P. 147—158.
  24. Bulte D.P., Langman R.A. Origins of the magnetomechanical effect // Journal of Magnetism and Magnetic Materials. 2002. V. 251. No. 2. P. 229—243.
  25. Tikadzumi S. Fizika ferromagnetizma. Magnitnye kharakteristiki i prakticheskie primeneniya. Moskva: Mir, 1987. 420 p.
  26. Jiles D. C. Theory of the magnetomechanical effect // Journal of physics D: applied physics. 1995. V. 28. No. 8. P. 1537.
  27. Atherton D.L., Jiles D.C. Effects of Stress on the Magnetization of Steel // IEEE Transactions on magnetics. 1983. V. 19. No. 5. P. 2021—2023.
  28. Kuleev V.G., Tsar’kova T.P. Osobennosti zavisimosti koertsitivnoy sily staley ot uprugikh rastyagivayushchikh napryazheniy posle plasticheskikh deformatsiy i termoobrabotki // Fizika metallov i metallovedenie. 2007. V. 104. No. 5. P. 479—486.
  29. Kuleev V.G., Tsar’kova T.P., Kazantseva Zh.V. Vliyanie plasticheskikh deformatsiy na zavisimosti ostatochnoy namagnichennosti staley ot uprugikh rastyagivayushchikh napryazheniy // Fizika metallov i metallovedenie. 2009. V. 107. No. 5. P. 468—471.
  30. Stashkov A. N., Nichipuruk A. P., Shchapova E. A. Mobil’nyy magnetometricheskiy kompleks dlya kontrolya ostatochnykh mekhanicheskikh napryazheniy v stal’nykh konstruktsiyakh // Nauchnoe priborostroenie. 2019. V. 29. No. 1. P. 47—54.
  31. Stashkov A.N., Schapova E.A., Nichipuruk A.P., Korolev A.V. Magnetic incremental permeability as indicator of compression stress in low-carbon steel // NDT & E International. 2021. V. 118. P. 102398—102402.
  32. Wang N., Li P., Li T., Wang Y., He C., Liu X. Quantitative characterization of tensile stress in electroplated nickel coatings with a magnetic incremental permeability sensor // Sensors and Actuators A: Physical. 2024. V. 368. P. 115082.
  33. Makar J.M., Atherton D.L. Effect of Uniaxial Stress on the Reversible and Irreversible Permeabilities of 2 % Mn Pipeline Steel // IEEE Transactions on magnetics. 1994. V. 30. No. 4. P. 1380—1387.
  34. Novikov V.F., Zakharov V.A., Ul’yanov A.I., Sorokina S.V., Kudryashov M.E. Vliyanie dvukhosnoy uprugoy deformatsii na koertsitivnuyu silu i lokal’nuyu ostatochnuyu namagnichennost’ konstruktsionnykh staley // Defectoskopiya. 2010. No. 7. P. 59—68.
  35. Kostin V.N., Kadrov A.V., Kuskov A.E. Otsenka uprugikh i plasticheskikh deformatsiy ferrito-perlitnykh staley po magnitnym svoystvam veshchestva // Defectoskopiya. 2005. No. 10. P. 13—22.
  36. Agiley R.V., Leonov I.S. Issledovanie izmeneniya koertsitivnoy sily i parametrov tverdosti stenki truby pri deformirovanii izgibom // Truboprovodnyy transport: teoriya i praktika. 2012. No. 3. P. 39—42.
  37. Malakhov I.S., Sokolov R.A., Muratov K.R. Issledovanie vliyaniya dvukhosnogo mekhanicheskogo nagruzheniya na magnitnye kharakteristiki i garmonicheskiy spektr pruzhinnoy stali 65G // Zavodskaya laboratoriya. Diagnostika materialov. 2025. V. 91. No. 5. P. 31—37.
  38. Mushnikov A.N., Povolotskaya A.M., Zadvorkin S.M., Kryucheva K.D. Vliyanie dvukhosnogo simmetrichnogo rastyazheniya na magnitnye svoystva sostavnogo obraztsa iz dvukh stal’nykh plastin s razlichnymi mekhanicheskimi i magnitnymi svoystvami // Defectoskopiya. 2024. No 9. P. 25—39.
  39. Myznov K.E., Ksenofontov D.G., Afanas’ev S.V., Vasilenko O.N., Kostin V.N., Bondina A.N., Toporishchev A.S., Kukushkin S.S., Salomatin A.S. Opredelenie magnitnykh svoystv trubnykh staley v protsesse ispytaniya na izgib // Defectoskopiya. 2025. No 6. P. 70—74.
  40. Bernshteyn M.L., Zaymovskiy V.A. Mekhanicheskie svoystva metallov. Moskva: Metallurgiya, 1979. 496 p.
  41. Mikheev M.N. Topografiya magnitnoy induktsii v izdeliyakh pri lokal’nom namagnichivanii ikh pristavnymi elektromagnitami // Izvestie AN SSSR, OTN. 1943. No 3—4. P. 68—77.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».