Acoustic properties of aspen wood (Populus tremula),modified by ultrasonic method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Evaluation of the acoustic properties of objects using the obtained results as an informative parameter in determining the physical and mechanical characteristics of the material, as well as in the field of non-destructive testing, is widely used in modern science and technology. In the present paper the possibility of using this approach is considered in relation to the woodworking industry in order to estimate the characteristics of sawn timber modified by the ultrasonic method. The results of previous studies have shown the effectiveness of this technology for increasing the surface density and hardness of wood, therefore one of the urgent tasks is to find criteria that allow evaluating the achieved modification parameters, as well as optimizing the settings of the corresponding technological equipment.In this paper the research results of the acoustic properties of ultrasonic modified aspen wood (Populus Tremula) are represented and their applicability as a criterion for estimating the degree of modification for industrial wood blanks is revealed.

About the authors

A. A Vjuginova

Saint Petersburg Electrotechnical University “LETI”

Email: aavyuginova@etu.ru
Saint Petersburg, Russia

A. V Teplyakova

Saint Petersburg Electrotechnical University “LETI”

Email: avteplyakova@etu.ru
Saint Petersburg, Russia

E. S Popkova

Saint Petersburg Electrotechnical University “LETI”

Email: espopkova@etu.ru
Saint Petersburg, Russia

References

  1. Sandberg D., Kutnar A., Karlsson O., Jones D. Wood Modification Technologies: Principles, Sustainability, and the Need for Innovation /1st ed. Boca Raton: CRC Press, 2021.
  2. Dominkovics Z., Dányádi L., Pukánszky B. Surface modification of wood flour and its effect on the properties of PP/wood composites // Composites Part A: Applied Science and Manufacturing. 2007. V. 38. P. 1893-1901. doi: 10.1016/j.compositesa.2007.04.001
  3. Petrič M. Surface Modification of Wood // Reviews of Adhesion and Adhesives. 2013. V.2. P. 216-247. doi: 10.7569/RAA.2013.097308
  4. Tarkow H., Seborg R. Surface densification of wood // Forest Products Journal. 1968. V. 18. No. 9. P. 104-107.
  5. Sadatnezhad S.H., Khazaeian A., Sandberg D., Tabarsa T. Continuous surface densification of wood: a new concept for large-scale industrial processing // Bioresources. 2017. V. 12. No. 2. P. 3122-3132.
  6. Neyses B. Surface Densification of Solid Wood: Paving the Way Towards Industrial Implementation / PhD dissertation. Lulea University of Technology. 2019.
  7. Иванов В.А., Новик А.А., Новик А.А.(мл.), Новик (Вьюгинова) А.А. Устройство для ультразвуковой обработки древесины / Патент РФ 2419537. 2011.
  8. Вьюгинова А., Вьюгинов С. Устройство для ультразвуковой обработки пиломатериалов / Патент РФ 130909. 2013.
  9. Вьюгинова А.А., Вьюгинов С.Н., Новик А.А. Устройство для ультразвуковой модификации пиломатериалов / Патент РФ 213732. 2022.
  10. Vjuginova A.A., Novik A.A., Vjuginov S.N., Ivanov V.A. Ultrasonic modification for improvement of wood-Surface properties // Wood Material Science & Engineering. 2021. doi: 10.1080/17480272.2021.2006778.
  11. Sun-Tae An. Method and apparatus for increasing the hardness and intensity of wood / Patent WO2000013865A3. 2000.
  12. Ерофеев А., Конохов А., Легуша Ф., Попов Н., Пугачев С., Семенова Н., Сун-Тэ Ан. Способ уплотнения и формообразования изделий из цельной древесины и устройство для его осуществления / Патент РФ 2122944. 1998.
  13. Ерофеев А., Конохов А., Легуша Ф., Попов Н., Пугачев С., Семенова Н., Сун-Тэ Ан. Способ уплотнения и формообразования цилиндрических изделий из цельной древесины и устройство для его осуществления / Патент РФ 2134195. 1998.
  14. Bucur V. Acoustics of wood. Berlin, Heidelberg: Springer, 2006. 396 p. doi: 10.1007/3-540-30594-7
  15. Kato K., Tsuzuki K., Asano I. Studies on vibration cutting of wood, part 1 //j. Jap. Wood Res. Soc. 1971. V. 17. P. 57-65.
  16. Koc A. B., Liu B. Ultrasonic Cutting of Switchgrass and Miscanthus Stems // Applied Engineering in Agriculture. 2018. V. 34. P. 343-353. doi: 10.13031/aea.11942
  17. Zhengbin H., Zhenyu W., Zijian Z., Songlin Y., Jun M., Xiaoxu W. Influence of ultrasound pretreatment on wood physichemical structure // Ultrasonics Sonochemistry. 2017. V. 34. P. 136-141. doi: 10.1016/j.ultsonch.2016.05.035
  18. Qian J., Li Y., Gao J., He Z., Yi S. The effect of ultrasonic intensity on physicochemical properties of Chinese fir // Ultrasonics Sonochemistry. 2020. V. 64. 104985. doi: 10.1016/j.ultsonch.2020.104985
  19. Bhagya Raj G.V.S., Dash K. K. Ultrasound-assisted extraction of phytocompounds from dragon fruit peel: Optimization, kinetics and thermodynamic studies // Ultrasonics Sonochemistry. 2020. V. 68. P. 105180. doi: 10.1016/j.ultsonch.2020.105180
  20. Bucur V. Ultrasonic techniques for nondestructive testing of standing trees // Ultrasonics. 2005. V. 43. P. 237-239. doi: 10.1016/j.ultras.2004.06.008
  21. Li L., Wang X., Wang L., Allison R. B. Acoustic tomography in relation to 2D ultrasonic velocity and hardness mappings // Wood Science and Technology. 2021. V. 46. P. 551-561. https://doi.org/10.1007/s00226-011-0426-y
  22. Dahmen S., Ketata H., Ghozlen M. H. B., Hosten B. Elastic constants measurement of anisotropic Olivier wood plates using air-coupled transducers generated Lamb wave and ultrasonic bulk wave // Ultrasonics. 2010. V. 50. P. 502-507. doi: 10.1016/j.ultras.2009.10.014
  23. Longo R., Delaunay T., Laux D., El Mouridi M., Arnould O., Le Clézio E. Wood elastic characterization from a single sample by resonant ultrasound spectroscopy // Ultrasonics. 2012. V. 52. P. 971-974. doi: 10.1016/j.ultras.2012.08.006
  24. Chubinskii A.N., Tambi A.A., Teppoev A.V., Semishkur S.O., Bakhshieva M.A., Anan′eva N.I. Physical nondestructive methods for the testing and evaluation of the structure of wood-based materials // Russian Journal of Nondestructive Testing. 2014. V. 50. P. 693-700. doi: 10.1134/S1061830914110023
  25. Dündar T., Wang X., Avcı N., As E. Potential of ultrasonic pulse velocity for evaluating the dimensional stability of oak and chestnut wood // Ultrasonics. 2016. V. 66. P. 86-90. doi: 10.1016/j.ultras.2015.11.007
  26. Fathi H., Kazemirad S., Nasir V. Lamb wave propagation method for nondestructive characterization of the elastic properties of wood // Applied Acoustics. 2021. V. 171. P. 107565. doi: 10.1016/j.apacoust.2020.107565
  27. Ozyhar T., Hering S., Sanabria S. J., Niemz P. Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves // Wood Science and Technology. 2013. V. 47. P. 329-341. https://doi.org/10.1007/s00226-012-0499-2
  28. Vázquez C., Gonçalves R., Bertoldo C., Baño V., Vega A., Crespo J., Guaita M. Determination of the mechanical properties of Castanea sativa Mill. using ultrasonic wave propagation and comparison with static compression and bending methods // Wood Science and Technology. 2015. V. 49. P. 607-622. https://doi.org/10.1007/s00226-015-0719-7
  29. Salmi A. Ultrasonic quantitative strength assessment of artificially aged and archaeological wood samples // The Journal of the Acoustical Society of America. 2008. V. 123. P. 3607-3607. doi: 10.1121/1.2934789
  30. Yaitskova N., van de Kuilen J. W. Time-of-flight modeling of transversal ultrasonic scan of wood // The Journal of the Acoustical Society of America. 2014. V. 135. P. 3409-3415. doi: 10.1121/1.4873519
  31. Koczan G., Karwat Z., Kozakiewicz P. An attempt to unify the Brinell, Janka and Monnin hardness of wood on the basis of Meyer law // Journal of Wood Science. 2021. V. 67. P. 7. doi: 10.1186/s10086-020-01938-4
  32. Kang C.-W., Jang E.-S., Lee N.-H., Jang S.-S., Lee M. Air permeability and sound absorption coefficient changes from ultrasonic treatment in a cross section of Malas (Homalium foetidum) // Journal of Wood Science. 2021. V. 67. No. 10. doi: 10.1186/s10086-020-01940-w

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies