Cell Kinetic Approaches to the Search for Anti-Aging Drugs: Thirty Years After


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This is a brief overview of the ideas of the possibility of using the cell kinetic model developed by the author in the 1980s to test, in experiments on cell cultures, potential geroprotectors and geropromoters that slow down or accelerate, respectively, the aging process in animals and humans. The history of the evolution of this model—from estimation of only the cell reproduction rate and saturation density in a non-subcultured cell culture to constructing survival curves in the stationary phase of growth and to a further analysis of the possible interrelation between all parts of the curve of cells’ growth and subsequent dying out—is considered. Possible approaches to mathematical and statistical analysis of the data obtained within the framework of this model system are analyzed. It is emphasized that such studies can be carried out on cells of a very different nature (normal and transformed human and animal cells, plant cells, yeast, mycoplasmas, bacteria, etc.), which makes possible an evolutionary approach to the interpretation of the results obtained. At the same time, in the author’s opinion, the most promising experiments are those carried out on immortalized cells of humans and animals, since they are not cancerous on the one hand and have an unlimited mitotic potential on the other hand and, therefore, do not “age” in the process of numerous divisions, as, for example, normal human diploid fibroblasts do. It is assumed that the appropriate mathematical analysis of the entire growth and dying out curve of a non-subcultured cell culture (from seeding into a culture flask to the complete death of all cells) may allow the clarification of certain relationships between the development and aging of a multicellular organism and to increase the reliability of identifying promising geroprotectors.

作者简介

A. Khokhlov

Evolutionary Cytogerontology Sector, School of Biology

编辑信件的主要联系方式.
Email: khokhlov@mail.bio.msu.ru
俄罗斯联邦, Moscow, 119234

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2018